Mikrobiyal Yakıt Hücresinde 2-Hydroxy-1,4-Naphthoquinone'nin Elektrik Üretimine Katkısı

Mikrobiyal yakıt hücreleri (MYH) organik maddelerin parçalanması sonucunda direk elektrik enerjisininüretildiği biyolojik sistemlerdir. Son yıllarda, güç artırımı amacıyla mikrobiyal yakıt hücrelerinde anotperformansını arttırmak için çeşitli mediyatörler kullanılmıştır. Bu çalışmada, 2-hydroxy-1,4-naphthoquinone(HNQ) mediyatörünün çift bölmeli bir mikrobiyal yakıt hücresinde elde edilen güç miktarına katkısıbelirlenmiştir. MYH, sırasıyla mediyatörsüz, 100, 200 ve 400 µM HNQ mediyatörlü işletilmiştir. Mediyatörsüzişletim esnasında, elde edilen güç yoğunluğu 16 mW/m2 olarak tespit edilirken, en yüksek güç yoğunluğu 200µM HNQ ilavesi ile 64,4 mW/m2 olarak belirlenmiştir.

Contribution of 2-Hydroxy-1,4-Naphthoquinone on Electricity Generation in Microbial Fuel Cell

Microbial fuel cells (MFC) are biological systems in which electricity is directly generated by degradation oforganic matter. Recently, various mediators have been used to enhance the anode performance in microbial fuelcells for increasing power generation. This study presents the contribution of 2-hydroxy-1,4-naphthoquinone(HNQ) on power generation in two-chamber MFC. The system was operated with no mediator, 100, 200 and 400µM HNQ, respectively. While the maximum power density was 16 mW/m2 during operation without mediator,it increased to 64,4 mW/m2 at 200 µM HNQ.

___

  • 1. Potter, M.C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings the Royal of Society London B Biol. Sci. 84, 160-276.
  • 2. Srikanth, S., Pavani, T., Pavani, P.N., Pavani, S. (2011). Synergistic interaction of biocatalyst with bio-anode as a function of electrode materials. International journal o f hydrogen energy 36, 2271-2280.
  • 3. Peter Bennetto, H., Stirling, J.L., Tanaka, K., Vega, C.A. (2004). Anodic reactions in microbial fuel cells. Biotechnology and Bioengineering. 25, 559-568.
  • 4. Roller, S.D., Bennetto, H.P., Delaney, G.M., Masson, J.R., Stirling, J.L., Thurston, C.F. (1984). Journal of Chemical Technology and Biotechnology. 34, 3-12.
  • 5. Nasirahmadi, S., Safekordi, A.A. (2012). Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell. International Journal of Environmental Science and Technology. 3, 473-478.
  • 6. Kalathil, S., Lee, J., Cho, M.H. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New biotechnology. 29, 32-37.
  • 7. Katuri, K.P., Enright, A.M., O'Flaherty, V., Leech, D. (2012). Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry. 87, 164-171.
  • 8. Liu, Hong., Ramnarayanan, R., Logan, B.E. (2004). Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science Technology. 38, 2281-2285.
  • 9. Kim. H.J., Park, H.S., Hyun, M.S., Chang, I.S., Kim, M., Kim, B.H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology. 30, 145-152.
  • 10. Ho, P.I., Kumar, G.G., Kim, A.R., Kim, P., Nahm, K.S. (2011). Microbial electricity generation of diversified carbonaceous electrodes under variable mediators. Bioelectrochemistry. 80, 99-104.
  • 11. Park, D.H., Zeikus, J.G. (1999). Utilization of Electrically Reduced Neutral Red by Actinobacillus succinogenes: Physiological Function of Neutral Red in Membrane-Driven Fumarate Reduction and Energy Conservation. Journal of bacteriology. 181(8):2403-2410.
  • 12. Choi, Y., Choi, N., Kim, S., Jung, S. (2003). Dynamic Behaviors of Redox Mediators within the Hydrophobic Layers as an Important Factor for Effective Microbial Fuel Cell Operation. Bull. Journal of Korean Chemical Society. 24, 437-440.
  • 13. Lithgow, A.M.L., Romero, L., Sanchez, I.C., Souto, F.A., Vega, C.A. (1986). Interception of the electron-transport chain in bacteria with hydrophilic redox mediators .1. Selective improvement of the performance of biofuel cells with 2,6-disulfonated thionine as mediator. Journal of Chemical Research. 5, 178-179.
  • 14. Mohan, Y., Kumar, S.M.M., Das, D. (2008). International Journal of Hydrogen Energy. International Journal of Hydrogen Energy. 33, 423-426.
  • 15. Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology. Environmental Science and Technology. 40, 5181-5192.
  • 16. Vizhemehr, A.K., Kariminia, H.R., Yaghmaei, S. (2012). Prediction of Electricity Generation in a Duel Chamber Microbial Fuel Cell. Vol. 9, No. 1 (Winter).
  • 17. Gunasekaran, G., Chongdar, S., Naragoni, S., Rodrigues, P.V., Bobba, R. (2011). Microbial fuel cell constructed with micro-organisms isolated from industry effluent. International Journal of Hydrogen Energy. 36, 14914-14922.
  • 18. Babanova, S., Hubenova, Y., Mitov, M. (2011). Influence of artificial mediators on yeast-based fuel cell performance. Journal of Bioscience and Bioengineering. 112, 379-387, 2011.
  • 19. Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Shakeri, M., Zare, H. Methylene blue as electron promoters in microbial fuel cel. International Journal of Hydrogen Energy. 36, 13335-13341, 2011.