İndirgen Şartlarda Sıfır Değerlikli Demir ile Metronidazol ve Nitrat Giderimi

Bu çalışmada, su kaynaklarında kirliliğe neden olabilen nitrat ve metronidazolun (MNZ) sıfır değerlikli nano demir (nZVI) ile birlikte giderimi indirgen şartlar altında araştırılmıştır. Optimum giderim verimini sağlayan pH, nZVI dozajı, sıcaklık, başlangıç nitrat ve MNZ konsantrasyonu gibi parametreler belirlenmiştir. nZVI: 1 g/L, pH:7, T:30 0C ve 20 mg/L nitrat ve 60 mg/L MNZ başlangıç konsantrasyon değerlerinde her iki kirletici için en yüksek giderim verimleri elde edilmiştir. Deney serilerinin sonunda gerçekleştirilen desorpsiyon ve ara ürün belirleme çalışmalarında nZVI ile MNZ ve nitratın giderim mekanizmasının adsorpsiyondan ziyade parçalanma olduğu ve oluşan ara ürünlerinde nZVI yüzeyine adsorplanma eğiliminde olduğu düşünülmüştür.

___

  • 1. Zhang, J., Hao, Z., Zhang, Z., Yang, Y., Xu, X. (2010). Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Safety and Environ. Protect, 88: 439-445. 2. Shin, K-H., Cha, D.K. (2008). Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere, 72: 257-262. 3. Karaalp, D. (2010). İleri oksidasyon prosesleri ile bazı farmasötiklerin parçalanmasının incelenmesi. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, 129s. 4. Halling-Sorensen, B., Nielsen, S., Lanzky, PF., Ingerslev, F., Lutzhoft, HC., Jorgensen, SE. (1998). Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment a Review. Chemosphere, 36: 357–93. 5. Kümmerer, K., Al-Ahmad, A., Mersch-Sundermann, V. (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test, Chemosphere, 40: 701-710. 6. Blackwell, P.A., Lützhøft, H-C.H., Ma, H-P., Halling-Sørensen, B., Boxall, A.B.A. and Kay, P. (2004). Fast and robust simultaneous determination of three veterinary antibiotics in groundwater and surface water using a tandem solid-phase extraction with high-performance liquid chromatography–UV detection. Journal of Chromatography A, 1045: 111-117. 7. Elmolla, E.S., Chaudhuri, M. (2010). Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination, 256: 43-47. 8. García-Galan, M.J., Anfruns, A., Gonzalez-Olmos, R., Rodriguez-Mozaz, S. and Comas J. (2016). Advanced oxidation of the antibiotic sulfapyridine by UV/H2O2: Characterization of its transformation products and ecotoxicological implications. Chemosphere, 147: 451-459. 9. Wan, Z., Hu, J., Wang, J. (2016). Removal of sulfamethazine antibiotics using Ce-Fe-graphene nanocomposite as catalyst by Fenton-like process. Journal of Environmental Management, 182: 284-291. 10. Liu, P., Zhang, H., Feng, Y., Yang, F. and Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240: 211-220. 11. Mohammed, S., Fasnabi, P.A. (2016). Removal of dicofol from waste-water using advanced oxidation process. Procedia Technology, 24: 645-653. 12. Zhang, H., Jın, Z-h., Han, L., Qın, C-h. (2006). Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Transactions of Nonferrous Metals Society of China, 16: 345-349. 13. Ghauch, A., Tuqan, A., Abou Assi, H. (2009). Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution, 157: 1626-2635. 14. Hanay, Ö., Türk, H. (2013). Comprehensive evaluation of adsorptipn and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron. Desalination and Water Treatment, 53: 1986-1994. 15. Chen, J., Qiu, X., Fang, Z., Yang, M., Pokeung, T., Gu, F., Cheng, W. and Lan, B. (2012). Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chemical Engineering Journal, 181-182: 113-119. 16. Ghauch, A., Abou Assi, H., Bdeir, S. (2010). Aqueous removal of diclofenac by plated elemental iron: bimetallic systems. Journal of Hazardous Materials, 182: 64-74. 17. Kummerer, K. (2001). Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-A review. Chemosphere, 48: 957-969. 18. Fu, F., Dionysiou, D.D., Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267: 194-205. 19. Hwang, Y-H., Kim, D-G., Shin, H-S. (2011). Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials, 185: 1513-1521. 20. Siciliano, A. (2015). Use of nanoscale zero-valent iron (nZVI) particles for chemical denitrification under different operating conditions. Metals, 5: 1507-1519. 21. Peng, L., Liu, Y., Gao, S-H., Chen, X., Xin, P., Dai, X. and Ni, B-J. (2015). Evaluation on the nanoscale zero valent iron based microbial denitrification for nitrate removal from groundwater. Scientific Reports, 5: 12331. 22. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Advances in Water Resources, 51: 104-122. 23. Fang, Z., Chen, J., Qiu, X., Qiu, X., Cheng, W. and Zhu, L. (2011). Effective removal of antibiotic metronidazole from water by nanoscale sero-valent iron particles. Desalination, 268: 60-67. 24. Xu, J., Hao, Z., Xie, C., Lv, X., Yang, Y. and Xu, X. (2012). Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron, Desalination, 284: 9–13.