SLEGS Robot ’un Tasarımı ve 2B-Navigasyon Uygulaması

Yapılan bu çalışmada, endüstride, terörle mücadelede, savunmada ve birçok endüstriyel işlevlerde kullanılmak amacıyla arazi ve engel şartlarına göre geleneksel tekerlek şeklindeki “O” şeklinden “S” şekline dönüşebilen 6 adet bacaktan oluşan “SLEGS” isimli örümcek robot için yeni bir bacak tasarımı-imalatı ve kontrolü gerçekleştirilmiştir. Bilinmelidir ki paletli ya da tekerlekli robotların merdivenleri tırmanmaları imkânsızdır. Bu tasarım tamamen geleneksel tekerlekli ve paletli robotlardaki bu problemleri aşmak ve performansı arttırmak içindir. Ayrıca SLEGS Robot bir operatör yardımı olmadan kendi iç yazılım ve hareket performansı sayesinde lazer sensörleri kullanılarak oluşturulan görsel ara yüz ve iki boyutlu(2B) navigasyon ile istenilen noktaya gidebilmektedir. SLEGS robota ait performans kriterleri elde edilen videolar ve gerçek zamanlı 2B navigasyonun görsel ara yüzeyinden elde edilerek değerlendirilmiştir.   

___

  • 1. Poulakakis, I., Smith, J.A. and Buehler, M. (2005). Modeling and experiments of untethered quadrupedal running with a bounding gait: the Scout II robot. The International Journal of Robotics Research, 24(4), 239-256. 2. Erden, M.S. and Leblebicioglu, K. (2008). Free gait generation with reinforcement learning for a six-legged robot. Robotics and Autonomous Systems, 56(3), 199-212. 3. Soyguder, S. and Alli, H. (2007). Design and prototype of a six-legged walking insect robot. Industrial Robot – An International Journal, 34(5), 412-422. 4. Soyguder, S. and Alli, H. (2011). Motion mechanism concept and morphology of a single actuator tetrapod walking spider robot: the ROBOTURK SA-2 Robot. Industrial Robot – An International Journal, 38(4), 361-371. 5. Soyguder, S. and Alli, H. (2012a). Kinematic and dynamic analysis of a hexapod walking–running–bounding gaits robot and control actions. Computers and Electrical Engineering, 38(2). 444-458. 6. Soyguder, S. and Alli, H. (2012b). Computer simulation and dynamic modeling of a quadrupedal pronking gait robot with SLIP model. Computers and Electrical Engineering, 38(1), 161-174. 7. Erden, M.S. and Leblebicioglu, K. (2006). “Multi legged walking in robotics and dynamic gait pattern generation for a six-legged robot with reinforcement learning’’. Mobile Robots: New Research, Nova Publishers, New York, 1111-1132. 8. Son, D., Jeon, D., Nam, W.C., Chang, D., Seo, T.W. and Kim, J. (2010). Gait planning based on kinematics for a quadruped gecko model with redundancy. Robotics and Autonomous Systems, 58(5), 648-656. 9. Yi, S. (2010). Reliable gait planning and control for miniaturized quadruped robot pet. Mechatronics, 20(4), 485-495. 10. Yang, J.M. (2008). Two-phase discontinuous gaits for quadruped walking machines with a failed leg. Robotics and Autonomous Systems, 56(9), 728-737. 11. Ho, T., Choi, S. and Lee, S. (2007). Development of a Biomimetic Quadruped Robot. Journal of Bionic Engineering, 4(4), 193-199. 12. Lin, P.C., Komsuoglu, H. and Koditschek, D.E. (2006). Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits. IEEE Transaction on Robotics, 22(5), 932-943. 13. Patarinski, S., Brussel, H.V. and Thielemans, H. (1994). Path tracking control of wheeled mobile robots. Control Engineering Practice, 2(5), 893-896. 14. Saha, S.K., Angeles, J. and Darcovich, J. (1995). The design of kinematically isotropic rolling robots with omnidirectional wheels. Mechanism and Machine Theory, 30(8), 1127-1137. 15. Bühler, C., Hoelper, R., Hoyer, H. and Humann, W. (1995). Autonomous robot technology for advanced wheelchair and robotic aids for people with disabilities. Robotics and Autonomous Systems, 14, 213-222. 16. Mazo, M., Rodríguez, F.j., Lázaro, J.L., Ureña, J., García, J.C., Santiso, E. and Revenga, P.A. (1995). Electronic control of a wheelchair guided by voice commands. Control Engineering Practice, 3(5), 665-674. 17. Talebi, S., Buehler, M. and Papadopoulos, E. (2000). Towards dynamic step climbing for a quadruped robot with compliant legs. 3rd International Conference on Climbing and Walking Robots, Madrid, 1-8. 18. Moore, E.Z., Campbell, D., Grimminger, F. and Buehler, M. (2002). Reliable stair climbing in the simple hexapod Rhex. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Washington, 2222-2227. 19. Campbell, D. and Buehler, M. (2003). Stair descent in the simple hexapod RHex, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, 1380-1385. 20. McMordie, D. (2002). Towards Pronking with a Hexapod Robot. McGill University, Montreal. 21. Soyguder, S., Alli, H., Kara, S.E. and Karabulut, U. (2014a). A Nev leg prototype and control for SLEGS robot. 2014 National Meeting of Automatic Control-TOK, Kocaeli. 22. Soyguder, S., Genc, I. and Turan, M.M. (2015). Control and developed of SLEGS robot design. Undergraduate Project, Department of Mechanical Engineering, Firat University, Elazig. 23. Soyguder, S., Karabulut, U. and Apohan, M. (2014b). Developed of SLEGS Robot and Design and Manufactured Leg Mechanism. Undergraduate Project, Department of Mechanical Engineering, Firat University, Elazig. 24. Soyguder, S. (2011). Autonomous Mobile Robots and Navigation System. Post-Doctoral Research Fellowship Project, Scientific and Technological Research Council of Turkey (TUBITAK).