Streptozotosin ile Oluşturulmuş Diyabetik Sıçanların Beyin Dokusunda İrisin Üzerine Enalaprilin Etkileri

Amaç: Diabetes Mellitus'un (DM) uzun dönem etkileri sonucu; çeşitli hasarlar, disfonksiyonlar, organ yetmezlikleri, özellikle göz, böbrek, kalp ve damar hasarları oluşabilir. İrisin, nörodejenerasyonda oldukça etkili bir protein olan eşleşme bozucu proteinler (UCP)'in gen ekspresyonunu ve mitokondriyal yoğunluğunu artırmaktadır. Bu çalışmada streptozotosin (STZ) ile deneysel diyabet oluşturulan sıçan beyin dokusunda irisin immünreaktivitesi üzerine enalaprilin (EN) etkilerinin incelenmesi amaçlanmıştır. Gereç ve Yöntem: Çalışmamızda 18 adet Wistar albino cinsi erişkin erkek sıçan kullanıldı. Deney hayvanları her grupta 6 sıçan olmak üzere 3 eşit gruba ayrıldı. Kontrol grubuna deney süresi olan 6 hafta süresince herhangi bir işlem yapılmadı. DM grubuna 50 mg/kg tek doz STZ i.p olarak verildi. DM+EN grubuna ise 50 mg/kg tek doz STZ i.p olarak verilip enalapril 5 mg/kg/gün dozunda oral olarak uygulandı. Deney sonunda anestezi altında dekapite edilen sıçanların beyin dokuları hızla çıkartıldı. Beyin dokuları histolojik takip sonrası parafin bloklara gömüldü. Parafin bloklardan alınan kesitlere irisin immünreaktivitesi için avidin-biotin-peroksidaz metodu uygulandı. İmmünohistokimyasal boyanmanın değerlendirilmesinde; immünreaktivitenin yaygınlığı ve şiddeti esas alınarak histoskor oluşturuldu. Bulgular: Kontrol grubu ile karşılaştırıldığında irisin immünreaktivitesi DM grubunda istatistiksel olarak anlamlı bir şekilde azalmıştı. DM grubu ile karşılaştırıldığında ise irisin immünreaktivitesi DM+ EN grubunda anlamlı olarak artmıştı. Sonuç: Diyabetik beyin hasarına karşı efektif olduğu bilinen EN' in birçok mekanizma ile birlikte irisin üzerinden de etki edebileceği kanaatine varılmıştır.

Effects of Enalapril on Irisin Immunoreactivity in the Brain Tissue of Streptozotocin-Induced Diabetic Rats

Objective: Various defects, dysfunctions and organ failures may occur due to long term effects of diabetes mellitus (DM) especially in eye, kidney, heart and vascular system. Irisin increases expression and mitochondrial density of uncoupling proteins (UCPs) which are very important in the neurodegenerative process. In this study we aimed to investigate the effects of enalapril (EN) on irisin immunoreactivity in the brain tissue of streptozotocin (STZ)-induced diabetic rats. Material and method: In this study, 18 adult Wistar albino male rats were used. The study group was divided into 3 equal groups each containing 6 rats. The control group wasn't exposed to any kind of drugs during the 6 weeks of study period. 50 mg/kg single dose STZ was injected to DM group intraperitoneally. DM+EN group rats were given single 50 mg/kg intraperitoneal injection of STZ, oral 5 mg/kg/day enalapril for 6 weeks. Brain tissues of the rats were removed just after the decapitation under the anesthesia. Tissues were embedded into paraffin blocks after the routine histological preparations. Avidin-biotin-peroxidasetechnique was used in determination of irisin expression. Histoscore was created based on the diffusiveness and severity of immunoreactivity in assessment of immunohistochemical staining. Results: There was a significant decrease of irisin immunoreactivity in the DM group. Irisin immunoreactivity was found as significantly increased in DM+EN group compared to DM group. Conclusion: We can conclude that EN shows its effects due to its relationship with irisin along with other various mechanisms.

___

  • 1. Kahn C, Weir G, King G, Jacobson A, Moses A, Smith R. Joslin's Diabetes Mellitus 2008; 14th ed. Çeviri editörü: Prof. Dr. Volkan Yumuk
  • 2. Martínez-Tellez R, Gomez-Villalobos J, Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Res 2005; 1048: 108-15.
  • 3. Baynes JW. Role of oxidative stress in the development of complications in diabetes. Diabetes 1991; 40: 405-12.
  • 4. Baydas G, Reiter RJ, Nedzvetskii VS, et al. Melatonin protects the central nervous system of rats against toluene-containing thinner intoxication by reducing reactive gliosis. Toxicol Lett 2003; 137: 169-74.
  • 5. Kuzmicki M, Telejko B, Lipinska D, et al. Serum irisin concentration in women with gestational diabetes. Gynecol Endocrinol 2014; 30: 636-9.
  • 6. Moreno JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 2013; 98: 769- 78.
  • 7. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004; 25: 612-28.
  • 8. Heidland A, Sebekova K, Schinzel R. Advanced glycation end products and the progressive course of renal disease. Am J Kidney Dis 2001; 38: 100-6.
  • 9. Yenigün M. Her Yönüyle Diabetes Mellitus. 2. Baskı, İstanbul: Nobel Tıp Kitabevi, 2001: 237-43.
  • 10. Kato N, Mizuno K, Makino M, et al. Effects of 15- month aldose reductase inhibition with fidarestat on the experimental diabetic neuropathy in rats. Diabetes Res Clin Pract 2000; 50: 77-85.
  • 11. Bean L, Zheng H, Patel KP, Monaghan DT. Regional variations in NMDA receptor down regulation in streptozotocin-diabetic rat brain. Brain Res 2006; 1115: 217-22.
  • 12. Reagan LP, Magarinos AM, McEwen BS. Neurological changes induced by stress in streptozotocin diabetic rats. Ann NY Acad Sci 1999; 893: 126-37.
  • 13. Browrlee M. The pathological implications of protein glycation. Clin Invest Med 1995; 18: 275- 81.
  • 14. Abd El-Aziz MA, Othman AI, Amer M, ElMissiry MA. Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats. J Appl Toxicol 2001; 21: 469-73.
  • 15. Karim S, Bhandari U, Kumar H, Salam A, Siddiqui MAA, Pillai KK. Doksorubisin induced cardiotoxicity and its modulation by drugs. Indian J Pharmacol 2001; 33: 203-7.
  • 16. Jayasooriya AP, Mathai ML, Walker LL, et al. Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc Natl Acad Sci USA 2008; 105: 6531-6.
  • 17. Santos EL, de Picoli Souza K, Guimaraes PB, et al. Effect of angiotensin converting enzyme inhibitor enalapril on body weight and composition in young rats. Int Immunopharmacol 2008; 8: 247-53.
  • 18. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgammamodulating activity. Hypertension 2004; 43: 993- 1002.
  • 19. Banga A, Unal R, Tripathi P, et al. Adiponectin translation is increased by the PPARgamma agonists pioglitazone and omega -3 fatty acids. Am J Physiol Endocrinol Metab 2009; 296: 480-9.
  • 20. Santos EL, de Picoli Souza K, da Silva ED, et al. Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats. Biochem Pharmacol 2009; 78: 951-8.
  • 21. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481: 463-8.
  • 22. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1998; 1: 366-73.
  • 23. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416: 15-8.
  • 24. Mattson M.P, Liu D. Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 2003; 304: 539-49.
  • 25. Teshima Y, Akao M, Jones S.P, Marban E. Uncoupling protein-2 overexpression inhibits mitocondrial death pathway in cardiomyocytes. Circ Res 2003; 93: 192-200.
  • 26. Austin S,St-Pierre J. PGC1alpha and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012; 125: 4963-71.
  • 27. Komatsu M, Tong Y, Li Y, et al. Multiple roles of PPARalpha in brown adipose tissue under constitutive and cold conditions. Genes Cells 2012; 15: 91- 100.
  • 28. Hashemi MS, Ghaedi K, Salamian A, et al. Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience 2013; 231: 296-304.
  • 29. Moon H, Dincer F, Mantzoros CS. Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism 2013; 62: 1131-6.
Fırat Tıp Dergisi-Cover
  • ISSN: 1300-9818
  • Başlangıç: 2015
  • Yayıncı: Fırat Üniversitesi Tıp Fakültesi