Finite element simulation of femoral stems lightweighted with re-entrant honeycomb lattice structure

Finite element simulation of femoral stems lightweighted with re-entrant honeycomb lattice structure

Artificial hip joints are used to replace damaged or diseased natural joints. When the stress that is typically applied to the bone changes because the implant and bone are different in stiffness, a phenomenon known as stress shielding occurs. Stress shielding can lead to bone weakening through reduced density and aseptic loosening in the long term. Studies are ongoing to overcome this phenomenon through geometric design, the use of materials with a low modulus of elasticity, or latticed implants. In this study, the effect of lightening the hip prosthesis with lattice structures on stress shielding is investigated using finite element simulation. The femoral stem of a solid hip prosthesis was lightweighted, with a re-entrant honeycomb auxetic cellular lattice structure, and structural analysis was performed. Two different lattice orientations were used, and it was observed that the stress distribution was more homogeneous in both orientations. In these femoral stems, which can be easily produced using additive manufacturing methods, a volume reduction of up to 16% was achieved. The stress transmitted to the bone increased by more than 36%, depending on the orientation, which is a promising result for reducing the stress shield effect.

___

  • [1] Guo, L., Ataollah Naghavi, S., Wang, Z., Nath Varma, S., Han, Z., Yao, Z., et al., (2022). On the design evolution of hip implants: A review. Materials & Design. 216: 110552 1-19. doi: 10.1016/j.matdes.2022.110552.
  • [2] Bilhère-Dieuzeide, M., Chaves-Jacob, J., Buhon, E., Biguet-Mermet, G., Linares, J.-M., (2022). Material Removal of Hip Stem Prosthesis Using Bio-Inspiration from Trabecular Bone. Procedia CIRP. 110: 265–270. doi: 10.1016/j.procir.2022.06.048.
  • [3] Tyagi, S.A., M, M., (2023). Additive manufacturing of titanium-based lattice structures for medical applications – A review. Bioprinting. 30: e00267. doi: 10.1016/j.bprint.2023.e00267.
  • [4] Jetté, B., Brailovski, V., Dumas, M., Simoneau, C., Terriault, P., (2018). Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing. Journal of the Mechanical Behavior of Biomedical Materials. 77: 58–72. doi: 10.1016/j.jmbbm.2017.08.034.
  • [5] Seharing, A., Azman, A.H., Abdullah, S., (2020). A review on integration of lightweight gradient lattice structures in additive manufacturing parts. Advances in Mechanical Engineering. 12(6): 1–21. doi: 10.1177/1687814020916951.
  • [6] Xiao, R., Feng, X., Fan, R., Chen, S., Song, J., Gao, L., et al., (2020). 3D printing of titanium-coated gradient composite lattices for lightweight mandibular prosthesis. Composites Part B: Engineering. 193: 108057 1-10. doi: 10.1016/j.compositesb.2020.108057.
  • [7] Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M., (2018). Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges. Current Opinion in Solid State and Materials Science. 22(3): 75–99. doi: 10.1016/j.cossms.2018.05.002.
  • [8] Aufa, A.N., Hassan, M.Z., Ismail, Z., (2022). Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: Prospect development. Journal of Alloys and Compounds. 896: 163072. doi: 10.1016/j.jallcom.2021.163072.
  • [9] Xu, S., Shen, J., Zhou, S., Huang, X., Xie, Y.M., (2016). Design of lattice structures with controlled anisotropy. Materials & Design. 93: 443–447. doi: 10.1016/j.matdes.2016.01.007.
  • [10] Burton, H.E., Eisenstein, N.M., Lawless, B.M., Jamshidi, P., Segarra, M.A., Addison, O., et al., (2019). The design of additively manufactured lattices to increase the functionality of medical implants. Materials Science and Engineering: C. 94: 901–908. doi: 10.1016/j.msec.2018.10.052.
  • [11] Peto, M., Ramírez-Cedillo, E., Hernández, A., Siller, H.R., (2019). Structural design optimization of knee replacement implants for Additive Manufacturing. Procedia Manufacturing. 34: 574–583. doi: 10.1016/j.promfg.2019.06.222.
  • [12] Cantaboni, F., Ginestra, P., Tocci, M., Colpani, A., Avanzini, A., Pola, A., et al., (2022). Modelling and FE simulation of 3D printed Co-Cr Lattice Structures for biomedical applications. Procedia CIRP. 110: 372–377. doi: 10.1016/j.procir.2022.06.066.
  • [13] Arabnejad Khanoki, S., Pasini, D., (2013). Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. Journal of the Mechanical Behavior of Biomedical Materials. 22: 65–83. doi: 10.1016/j.jmbbm.2013.03.002.
  • [14] Cutolo, A., Engelen, B., Desmet, W., Van Hooreweder, B., (2020). Mechanical properties of diamond lattice Ti–6Al–4V structures produced by laser powder bed fusion: On the effect of the load direction. Journal of the Mechanical Behavior of Biomedical Materials. 104: 103656. doi: 10.1016/j.jmbbm.2020.103656.
  • [15] Bilhère-Dieuzeide, M., Chaves-Jacob, J., Buhon, E., Biguet-Mermet, G., Linares, J.-M., (2022). Material Removal of Hip Stem Prosthesis Using Bio-Inspiration from Trabecular Bone. Procedia CIRP. 110: 265–270. doi: 10.1016/j.procir.2022.06.048.
  • [16] Liverani, E., Rogati, G., Pagani, S., Brogini, S., Fortunato, A., Caravaggi, P., (2021). Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic implants. Journal of the Mechanical Behavior of Biomedical Materials. 121: 104608. doi: 10.1016/j.jmbbm.2021.104608.
  • [17] Liu, B., Wang, H., Zhang, M., Li, J., Zhang, N., Luan, Y., et al., (2023). Capability of auxetic femoral stems to reduce stress shielding after total hip arthroplasty. Journal of Orthopaedic Translation. 38: 220–228. doi: 10.1016/j.jot.2022.11.001.
  • [18] Alderson, A., Alderson, K.L., Sanami, M., (2013). Bone implant comprising auxetic material. GB2495272A, (2013).
  • [19] Izri, Z., Bijanzad, A., Torabnia, S., Lazoglu, I., (2022). In silico evaluation of lattice designs for additively manufactured total hip implants. Computers in Biology and Medicine. 144: 105353. doi: 10.1016/j.compbiomed.2022.105353.
  • [20] Chen, D., Li, D., Pan, K., Gao, S., Wang, B., Sun, M., et al., (2022). Strength enhancement and modulus modulation in auxetic meta-biomaterials produced by selective laser melting. Acta Biomaterialia. 153: 596–613. doi: 10.1016/j.actbio.2022.09.045.
  • [21] Alomarah, A., Ruan, D., Masood, S., Sbarski, I., Faisal, B., (2018). An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. The International Journal of Advanced Manufacturing Technology. 96(5–8): 2013–2029. doi: 10.1007/s00170-018-1605-x.
  • [22] Ajdary, R., Abidnejad, R., Lehtonen, J., Kuula, J., Raussi-Lehto, E., Kankuri, E., et al., (2022). Bacterial nanocellulose enables auxetic supporting implants. Carbohydrate Polymers. 284: 119198 1-10. doi: 10.1016/j.carbpol.2022.119198.
  • [23] Yang, L., Harrysson, O., West, H., Cormier, D., (2015). Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. International Journal of Solids and Structures. 69–70: 475–490. doi: 10.1016/j.ijsolstr.2015.05.005.
  • [24] Kolken, H.M.A., Janbaz, S., Leeflang, S.M.A., Lietaert, K., Weinans, H.H., Zadpoor, A.A., (2018). Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials. Materials Horizons. 5(1): 28–35. doi: 10.1039/C7MH00699C.
  • [25] F04 Committee, (2013). ASTM F2996 Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems. ASTM International.
  • [26] ISO/TC 150/SC 4, (2010). ISO 7206 Implants for surgery — Partial and total hip joint prostheses — Part 4: Determination of endurance properties and performance of stemmed femoral components. International Organization for Standardization (ISO).
  • [27] Gross, S., Abel, E.W., (2001). A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics. 34(8): 995–1003. doi: 10.1016/S0021-9290(01)00072-0.
  • [28] Mehboob, H., Chang, S.-H., (2014). Application of composites to orthopedic prostheses for effective bone healing: A review. Composite Structures. 118: 328–341. doi: 10.1016/j.compstruct.2014.07.052.
  • [29] RTI Titanium Company., (2000). Titanium Alloy Guide. RTI International Metals, Inc.: 1–45.
  • [30] Thompson, M.K., Thompson, J.M., (2017). Chapter 6 - Meshing. In: Thompson, M.K., Thompson, J.M., editors. ANSYS Mechanical APDL for Finite Element Analysis, Butterworth-Heinemann p. 181–199.
  • [31] Mehboob, H., Tarlochan, F., Mehboob, A., Chang, S.-H., Ramesh, S., Harun, W.S.W., et al., (2020). A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. Journal of Materials Science: Materials in Medicine. 31(9): 78 1-14. doi: 10.1007/s10856-020-06420-7.
European Mechanical Science-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Ahmet Çalık