Effect of temperature and time on hydrothermally synthesized nitrogen-doped graphene

Effect of temperature and time on hydrothermally synthesized nitrogen-doped graphene

Graphene attracts attention due to its high surface area and its great electrical, optical, and mechanical properties. Studies about graphene have been conducted to develop synthesis methods and to determine the effects of synthesis parameters on productivity and properties. In recent years, studies have focused on doping graphene with foreign atoms to improve its properties. Nitrogen (N) is of interest among doping materials because it increases graphene’s electrocatalytic activity and electrochemical performance. In this study, the production of nitrogen-doped graphene was studied, and a 2-stage synthesis procedure was used. In the first stage, graphene oxide was obtained from graphite by using the Modified Hummers method. To obtain N-doped graphene (N-graphene) from synthesized graphene oxide, N doping and hydrothermal method were used in the second stage. To determine the effect of temperature and time on the hydrothermal production of N-graphene from graphene oxide, 3 different temperatures and 3 different times were studied. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analyses, and the Debye-Scherrer equation indicated that nitrogen-doped graphene was obtained. The effects of temperature and time on synthesizing N-graphene were discussed within the scope of the parameters used in the hydrothermal method.

___

  • [1] Bedeloğlu, A., Taş, M. (2016). Grafen ve grafen üretim yöntemleri. Afyon Kocatepe University Journal of Science and Engineering, 16(3): 544-554. doi: 10.5578/fmbd.32173.
  • [2] Urade, A.R., Lahiri, I., Suresh, K.S. (2023). Graphene properties, synthesis and applications: A review. JOM, 75: 614-630. doi: 10.1007/s11837-022-05505-8.
  • [3] Choi, W., Lee, J. (2012). Graphene: Synthesis and Applications. CRC Press, America.
  • [4] Latiff, C., Wei, X., Kysar J., Hone J. (2008). Microwave irradiated N- and B, Cl-doped graphene: Oxidation method has strong influence on capacitive behavior. Applied Materials Today, 9: 204-211. doi: 10.1016/j.apmt.2017.07.006.
  • [5] Wang, Y., Shao, Y., Matson D.W., Li J., Lin Y. (2010). Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano, 4(4): 1790-1798. doi: 10.1021/nn100315s.
  • [6] Yadav, R., Dixit, C.K. (2017). Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. Journal of Science. Advanced Materials and Devices, 2(2): 141-149. doi: 10.1016/j.jsamd.2017.05.007.
  • [7] Xu, H., Ma, L., Jin, Z. (2017). Nitrogen-doped graphene: Synthesis, characterizations and energy applications. Journal of Energy Chemistry, 27(1): 146-160. doi: 10.1016/j.jechem.2017.12.006.
  • [8] Tiyek, I., Dönmez, U., Yıldırım, B., Alma, M.H., Ersoy, M.S., Karataş, Ş., Yazıcı, M. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2): 349-357. doi: 10.16984/saufenbilder.29009.
  • [9] Kayhan, E. (2013). Graphene: Synthesis, characterization, properties and functional behavior as catalyst support and gas sensor, Ph.D., Vom Fachbereich Chemie der Technischen Universität Darmstadt, Germany.
  • [10] Yazıcı, M., Tiyek, İ., Ersoy, M.S., Alma, M.H., Dönmez, U., Yıldırım, B., Salan T., Karataş, Ş., Uruş, S., Karteri, İ., Yıldız, K. (2016). Modifiye hummers yöntemiyle grafen oksit sentezi ve karakterizasyonu. Gazi University Journal of Science, 4(2): 41-48.
  • [11] Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Rahman, M.A., Othman M.H.D. (2015). Synthesis of graphene oxide nanosheets via modified hummers’ method and its physicochemical properties. Jurnal Teknologi, 74(1): 189-192. doi: 10.11113/jt.v74.3555.
  • [12] Qu, L., Liu, Y., Baek, J-B., Dai L. (2010). Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 4(3): 1321-1326. doi: 10.1021/nn901850u.
  • [13] Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., Xu, S. (2010). Large scale synthesis of N-doped multilayered graphene sheets by simple arc-discharge method. Carbon, 48(1): 255-259. doi: 10.1016/j.carbon.2009.09.013.
  • [14] Liu, Q., Guo, B., Rao, Z., Zhang B., Gong J.R. (2013). Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen doped graphene quantum dots for cellular and deep-tissue imaging. Nano Letters, 13(6): 2436-2441. doi: 10.1021/nl400368v.
  • [15] Li, M., Wu, Z., Ren, W., Cheng, H., Tang, N., Wu, W., Zhong, W., Du, Y. (2012). The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material’s photoluminescence. Carbon, 50(14): 5286-5291. doi: 10.1016/j.carbon.2012.07.015.
  • [16] Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K., Sato, T. (2000). Large-scale synthesis and hrtem analysis of single-walled B- and N-doped carbon nanotube bundles. Carbon, 38(14): 2017-2027. doi: 10.1016/S0008-6223(00)00058-0.
  • [17] Chen, J-X., Zhao, D-L., Yao, R-R., Li, C., Wang, X-J., Sun, F-F. (2017). Hedgehog-like CuO/nitrogen-doped graphene nanocomposite for high-performance lithium-ion battery anodes. Journal of Alloys and Compounds, 714: 419-424. doi: 10.1016/j.jallcom.2017.04.171.
  • [18] Wu, Z-S., Yang, S., Sun, Y., Parvez, K., Feng, X., Müllen, K. (2012). 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. Journal of the American Chemical Society, 134(22): 9082-9085. doi: 10.1021/ja3030565.
  • [19] Topçu, A. (2012). A green pathway for the production of chemically exfoliated graphene sheets with the assistance of microwave irradiation, Msc, Koç University, Turkey.
  • [20] Yan, Q., Liu, Q., Wang, J. (2016). A simple and fast microwave assisted approach for the reduction of graphene oxide. Ceramics International, 42(2): 3007-3013. doi: 10.1016/j.ceramint.2015.10.085.
  • [21] Liu, L., An, M., Yang, P., Zhang, J. (2015). Few-layer graphene prepared via microwave digestion reduction and its electrochemical performances in lithium ion batteries. International Journal of Electrochemical Science, 10: 1582-1594.
  • [22] Er, E. (2013). Grafen oksitin sülfürik ve fosforik asit varlığında indirgenmesi ve elektroanalitik uygulamalarının araştırılması, MSc, Gazi University, Turkey.
  • [23] Viana, M.M., Lima, M.C.F.S., Forsythe, J.C., Gangoli, V.S., Cho, M., Cheng, Y., Silva, G.G., Wong, M.S., Caliman, V. (2015). Facile graphene oxide preparation by microwave-assisted acid method. Journal of the Brazilian Chemical Society, 26(5): 978-984. doi: 10.5935/0103-5053.20150061.
  • [24] Yang, B., Guo, Y., Zhang, S., Wen, T., Zhao, C. (2014). Synthesis of graphene by microwave irradiation for dye adsorption. RSC Advances, 4: 64771-64780. doi: 10.1039/C4RA12589D
  • [25] Musa, N., Halim, A.N.F., Ahamad, M.N., Zakaria, Z., Hashim, U. (2017). Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT). American Institute of Physics, 1808(1): 020035. doi: 10.1063/1.4975268.
  • [26] Shahriary, L., Athawale, A.A. (2017). Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering, 2(1): 58-63.
  • [27] Xu, X., Zhou, Y., Yuan, T., Li, Y. (2013). Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea. Electrochimica Acta, 112: 587-598. doi: 10.1016/j.electacta.2013.09.038.
  • [28] Boran, F., Gürer, S.Ç. (2019). The effect of starting material types on the structure of graphene oxide and graphene. Turkish Journal of Chemistry, 43(5): 1322-1335. doi: 10.3906/kim-1901-47.
  • [29] Wang, L., Yin, F., Yao, C. (2014). N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte. International Journal of Hydrogen Energy, 39(28): 15913-15919. doi: 10.1016/j.ijhydene.2014.04.071.
  • [30] Wang, X., Ding, Y., Lu, H., Chen, F., Zhang, N., Ma, M. (2018). Chemoselective solution synthesis of pyrazolic-structure-rich nitrogen-doped graphene for supercapacitors and electrocatalysis. Chemical Engineering Journal, 347: 754-762. doi: 10.1016/j.cej.2018.04.163.
  • [31] Ollik, K., Rybarczyk, M., Karczewski, J., Lieder, M. (2020). Fabrication of anti-corrosion nitrogen doped graphene oxide coating by electrophoretic deposition. Applied Surface Science, 499: 143914. doi: 10.1016/j.apsusc.2019.143914.
  • [32] Zhang, S., Gao, H., Huang, M., Zhou, J. (2017). One-step hydrothermal synthesis of nitrogen doping graphene based cobalt oxide and its supercapacitive properties. Journal of Alloys and Compounds, 705: 801-805. doi: 10.1016/j.jallcom.2017.02.169.
  • [33] Zhang, D., Hao, Y., Ma, Y., Feng, H. (2012). Hydrothermal synthesis of highly nitrogen-doped carbon powder. Applied Surface Science, 258(7): 2510-2514. doi: 10.1016/j.apsusc.2011.10.081.
  • [34] Hu, X., Yu, Y., Wang, Y., Zhou, J., Song, L. (2015). Separating nano graphene oxide from the residual strong-acid filtrate of the modified hummers method with alkaline solution. Applied Surface Science, 329: 83-86. doi: 10.1016/j.apsusc.2014.12.110.
  • [35] Tian, J., Gao, F., Yu, X., Wu, W., Meng, H. (2017). Preparation of nitrogen-doped graphene by high-gravity technology and its application in oxygen reduction. Particuology, 34: 110-117. doi: 10.1016/j.partic.2017.03.002.
  • [36] Jafri, R.I., Rajalakshmi, N., Dhathathreyan, K.S., Ramaprabhu, S. (2015). Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. International Journal of Hydrogen Energy, 40(12): 4337-4348. doi: 10.1016/j.ijhydene.2015.02.008.
  • [37] Wang, L., Zhang, S., Zheng, D., Yang, H., Cui, H., Tang, W., Li, D. (2017). Effect of graphene oxide (GO) on the morphology and microstructure of cement hydration products. Nanomaterials, 7(12): 429. doi: 10.3390/nano7120429.
  • [38] Kumar, V., Kumar, A., Lee, D.-J., Park, S.-S. (2021). Estimation of number of graphene layers using different methods: A focused review. Materials, 14(16), 4590. doi: 10.3390/ma14164590.
  • [39] Zhang, Y., Chunxu, P. (2012). Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diamond & Related Materials, 24: 1-5. doi: 10.1016/j.diamond.2012.01.033.
  • [40] Zhang, Y.Y., Gu, Y.T. (2013). Mechanical properties of graphene: Effects of layer number, temperature and isotope. Computational Materials Science, 71: 197-200. doi: 10.1016/j.commatsci.2013.01.032.
European Mechanical Science-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Ahmet Çalık