Fatigue life analysis of welded joints in the frequency plane in a structure designed for the defense industry

Fatigue life analysis of welded joints in the frequency plane in a structure designed for the defense industry

Welded joints are used in many industrial products and evaluations against static and dynamic stresses are important in terms of structure and life safety. It is very difficult to predict and model the vibration fatigue life of welded joints in the frequency plane under dynamic stresses. In this study, fatigue life estimation was made in the welded joint on a structure under vibration stresses in the frequency plane. Vibration characteristics for modes up to 1000 Hz were determined by modal analysis of the structure. In the MIL-STD 810G standard, power spectral density (PSD) is offered for composite wheeled vehicles, which are products of the defense industry. Random vibration analyzes were performed by defining PSD data as analysis input. With the effective notch stress approach, geometry and material S-N definitions were made and evaluations were carried out according to the Dirlik method. As a result of this study, the fatigue life of welded joints was determined as 4.582e+11 seconds. Approaches for structural reliability in a welded joint structure designed for the defense industry are proposed.

___

  • [1] Schütz, W. (1996). A history of fatigue. Engineering fracture mechanics, 54(2):263-300. doi: 10.1016/0013-7944(95)00178-6.
  • [2] Smith, R., Hillmansen, S. (2004). A brief historical overview of the fatigue of railway axles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(4):267-277. doi: 10.1243/0954409043125932.
  • [3] Demirkaya, Ö. F., Tüfekçi, K. (2020). Zaman ve Frekans Düzleminde Yorulma Ömrü Hesaplama Yöntemlerinin Sonlu Elemanlar Yöntemi ile İncelenmesi Mühendislik Bilimleri ve Tasarım Dergisi, 8(2):467-478. doi: 10.21923/jesd.673141.
  • [4] Yue, J., Yang, K., Peng, L.,Guo, Y. (2021). A frequency-time domain method for ship fatigue damage assessment. Ocean Engineering, 220(1):108154. doi: 10.1016/j.oceaneng.2020.108154.
  • [5] Gök, A., Inal, S., Taspinar, F., Gulbandilar, E.,Gök, K. 2014 (2014). Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis. Optoelectronics and Advanced Materials-Rapid Communications, 8(5-6):576-580.
  • [6] Gök, A., Gök, K., Bilgin, M. B.,Alkan, M. A. (2017). Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling. Mater Tehnol, 51(6):957-965. doi: doi.org/10.17222/mit.2017.039.
  • [7] Baumgart, J., Fritzsche, C.,Marburg, S. (2022). Infrasound of a wind turbine reanalyzed as power spectrum and power spectral density. Journal of Sound and Vibration, 533(17):116310. doi: 10.1016/j.jsv.2021.116310.
  • [8] Pei, X., Ravi, S. K., Dong, P., Li, X.,Zhou, X. (2022). A multi-axial vibration fatigue evaluation procedure for welded structures in frequency domain. Mechanical Systems and Signal Processing, 167(6):108516. doi: 10.1016/j.ymssp.2021.108516.
  • [9] Wirsching, P. H., Light, M. C. (1980). Fatigue under wide band random stresses. Journal of the Structural Division, 106(7):1593-1607. doi: 10.1061/JSDEAG.0005477.
  • [10] Dirlik, T., “Application of computers in fatigue analysis,” University of Warwick, 1985.
  • [11] Benasciutti, D., Tovo, R. (2006). Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes. Probabilistic Engineering Mechanics, 21(4):287-299. doi: 10.1016/j.probengmech.2005.10.003.
  • [12] Yeter, B., Garbatov, Y.,Soares, C. G. (2016). Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures. International Journal of Fatigue, 87(9):71-80. doi: doi.org/10.1016/j.ijfatigue.2016.01.007.
  • [13] Lalanne, C. (2014). Fatigue Damage Spectrum of a Random Vibration. Specification Development, 125-163. doi: 10.1002/9781118931219.ch4.
  • [14] Gümüş, M. S., Erdemir, A., Alver, V.,Kalyoncu, M. (2021). Experimental evaluation of different spectral methods for damage estimation of an electrical panel bracket mounted on a military wheeled vehicle. Journal of Mechanical Science and Technology, 35(12):5561-5569. doi: 10.1007/s12206-021-1127-6.
  • [15] Braccesi, C., Cianetti, F., Lori, G.,Pioli, D. (2015). Random multiaxial fatigue: A comparative analysis among selected frequency and time domain fatigue evaluation methods. International Journal of Fatigue, 74(5):107-118. doi: 10.1016/j.ijfatigue.2015.01.003.
  • [16] MIL-STD-810G, 2008.
  • [17] Jang, J., Park, J.-W. (2020). Simplified vibration PSD synthesis method for MIL-STD-810. Applied Sciences, 10(2):458. doi: 10.3390/app10020458.
  • [18] Niemi, E., Fricke, W.,Maddox, S. J. (2018). Structural hot-spot stress approach to fatigue analysis of welded components (IIW doc), pp. 1819-00.
  • [19] Hobbacher, A. (2016). Recommendations for fatigue design of welded joints and components, Springer.
  • [20] Alencar, G., de Jesus, A. M., Calçada, R. A.,da Silva, J. G. S. (2018). Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration. Engineering Structures, 166(13):46-61. doi: 10.1016/j.engstruct.2018.02.058.
  • [21] Vannicola, S., De Mercato, L. (2015). Frequency domain application of the hot-spot method for the fatigue assessment of the weld seams, in ANSYS Conference &, of Conference, vol. 20.
  • [22] Lu, Y., Zheng, H., Lu, C., Chen, T., Zeng, J.,Dong, P. (2018). Analysis methods of the dynamic structural stress in a full-scale welded carbody for high-speed trains. Advances in Mechanical Engineering, 10(10):1687814018805917. doi: 10.1177/1687814018805917.
  • [23] Teixeira, G. M., Roberts, M.,Silva, J. (2019). Random vibration fatigue of welded structures-Applications in the automotive industry. Procedia Structural Integrity, 19(6):175-193. doi: 10.1016/j.prostr.2019.12.020.
  • [24] Özden, O. B., Gökçe, B.,Erdemir, A. (2022). Investigation of welded joints in finite element analysis, in 2nd International Congress on Scientific Advances (ICONSAD’22), of Conference. 516-522.
  • [25] Qin, Y., den Besten, H., Palkar, S.,Kaminski, M. L. (2021). Mid-and high-cycle fatigue of welded joints in steel marine structures: effective notch stress and total stress concept evaluations. International Journal of Fatigue, 142(1):105822. doi: 10.1016/j.ijfatigue.2020.105822.
  • [26] Łagoda, T., Głowacka, K. (2020). Fatigue life prediction of welded joints from nominal system to fracture mechanics. International Journal of Fatigue, 137(8):105647. doi: 10.1016/j.ijfatigue.2020.105647.
  • [27] Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y.,Gao, W. (2018). Dynamic analysis of functionally graded porous structures through finite element analysis. Engineering Structures, 165(12):287-301. doi: 10.1016/j.engstruct.2018.03.023.
  • [28] Fatemi, A., Yang, L. (1998). Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. International journal of fatigue, 20(1):9-34. doi: 10.1016/S0142-1123(97)00081-9.
  • [29] Han, S.-H., An, D.-G., Kwak, S.-J.,Kang, K.-W. (2013). Vibration fatigue analysis for multi-point spot-welded joints based on frequency response changes due to fatigue damage accumulation. International Journal of Fatigue, 48(3):170-177. doi: 10.1016/j.ijfatigue.2012.10.017.
  • [30] Haiba, M., Barton, D., Brooks, P.,Levesley, M. (2002). Review of life assessment techniques applied to dynamically loaded automotive components. Computers & structures, 80(5-6):481-494. doi: 10.1007/978-3-319-23757-2.
  • [31] Sherratt, F., Bishop, N.,Dirlik, T. (2005). Predicting fatigue life from frequency-domain data: current methods. Journal of the Engineering Integrity Society, 18(12-16.
  • [32] Larsen, C. E., Irvine, T. (2015). A review of spectral methods for variable amplitude fatigue prediction and new results. Procedia Engineering, 101(3):243-250.
  • [33] Mršnik, M., Slavič, J.,Boltežar, M. (2013). Frequency-domain methods for a vibration-fatigue-life estimation–application to real data. International journal of fatigue, 47(2):8-17.
  • [34] Wang, Q., Ji, B., Gao, T.,Fu, Z. (2021). Effective-notch-stress-based fatigue evaluation of rib-deck welds integrating the full-range S—N curve concept. Journal of Constructional Steel Research, 179(4):106541. doi: 10.1016/j.jcsr.2021.106541.
  • [35] Marquis, G. B., Barsoum, Z., Marquis, G. B.,Barsoum, Z. (2016). IIW Recommendations on high frequency mechanical impact (HFMI) treatment for improving the fatigue strength of welded joints, Springer.
European Mechanical Science-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Ahmet Çalık