The effects of radiation on bone mineral density of radiology workers depending on the device they use

Amaç: Bu çalışmanın amacı radyoloji çalışanlarının kullandığı cihaza göre mesleki radyasyon maruziyetinin kemik mineral yoğunluğu ve serum ALP seviyelerine etkilerini değerlendirmektir. Metod: Çalışmamızda Kütahya merkezdeki özel ve devlet hastanelerinde mesleki düşük doz radyasyon maruziyetindeki 49 radyoloji çalışanı (konvansiyonel röntgen, tomografi ve MRG) radyasyona maruz kalmayan aynı hastanelerin 40 çalışanı ile kemik mineral yoğunluğu ve serum ALP seviyeleri bakımından karşılaştırldı. Omur ve kalça BMD’leri dual enerji x-ray absorptiometry (DEXA) cihazıyla ölçüldü. Kontrol grupları yaş ve cinsiyet bakımından eşleştirildi. T-skor değerleri kullanıldı, osteoporozun belirlenmesinde yaygın olarak kullanılır. Bulgular: Radyoloji çalışanlarının kullandığı cihaza göre T-skorları (bütün gruplarda) kontrol gruplarından anlamlı olarak düşük bulundu (p

Radyoloji çalışanlarının kullandığı cihaza bağlı kemik mineral yoğunluğu üzerine radyasyonun etkileri

Aim: The aim of this study is to evaluate the effects of occupational radiation exposure according to the device radiology workers use regarding bone mineral density and and serum alkaline phosphatase (ALP) levels Method: In our study, private and state hospitals at Kütahya centrum, low dose radiation occupational exposure in 49 radiology workers (conventional roentgen, tomography and mri) were compared with 40 non-exposed workers of the same hospitals in terms of bone mineral density and serum alkaline phosphatase levels. The bone mineral density (BMD) was assessed in the spine and the hip with a dual-energy x-ray absorptiometry (DEXA) instrument. Age and sex matched control groups were evaluated by T scores, commonly were used to assess osteoporosis. Result: According to the device they use, T-scores of radiology workers (in all groups) were lower than the control group meaningfully (p

___

  • 1. Tuncel E. Clinic Radiology. 2th. Ed. Güneş Nobel Medicine Books Bursa, 2002: 25–30.
  • 2. Şeker S, Çerezci O. Environmental Radiation and Protection Methods. Boğaziçi University Press. İstanbul, 1997: 607: 468-70
  • 3. Baxter NN, Habermann EB, Teper JE, Durham SB, Virnig BA. Risk of pelvic fractures in older women following pelvic irradiation. J Am Med Assoc 2005;294:2587–93.
  • 4. Ergun H, Howland WJ. Postradiation atrophy of mature bone. CRC Crit Rev Diagn Imaging 1980;12:225–43.
  • 5. Ogino I, Okamoto N, Ono Y, Kitamura T, Nakayama H. Pelvic insufficiency fractures in postmenopausal woman with advanced cervical cancer treated by radiotherapy. Radiother Oncol 2003;68:61–7.
  • 6. Davydova NG. Relation between the levels of mineral components and mechanical properties of the bones in dogs after a single acute whole-body irradiation. Kosm Biol Aviakosm Med 1990;24:51-3.
  • 7. Volozhin AI, Stupakov GP, Davydova NG. Changes in the mechanical properties of the femur and jaws in dogs with osteoporosis due to a single acute whole-body irradiation. Patol Fiziol Eksp Ter 1990;4:44-6.
  • 8. Alwood JS, Yumoto K, Mojarrab R, et al. Heavy ion irradiation and unloading effects on Mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses. Bone 2010; 47:248-55
  • 9. Yiğit Ş. Biological Effects Of Radiation. Radiation Health ve Safety Department TAEK, 2004.
  • 10. What’s NEXT? Nationwide Evaluation of X-ray Trends: 2000 computed tomography. (CRCPD publication no. NEXT_2000CTT.) Conference of Radiation Control Program Directors, Department of Health and Human Services, 2006.
  • 11. Chang K, Chang WH. Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model, a prostaglandin E2-associated process. Bioelectromagnetics 2003;24:189-98.
  • 12. Garland DE, Adkins RH, Matsuno NN. The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. J Spinal Cord Med 1999; 22:239-45.
  • 13. Atay T, Aksoy BA, Aydogan NH, Baydar ML, Yıldız M, Ozdemir R. Effect of electromagnetic field induced by radio frequency waves at 900 to 1800 MHz on bone mineral density of iliac bone wings. J Craniofac Surg 2009; 20:1556-60.
  • 14. Hopewell JW. Radiation-therapy effects on bone density. Med Pediatr Oncol 2003;41:208–11.
  • 15. Nishiyama K, Inaba F, Higashirara T, Kitatani K, Kozuka T. Radiation osteoporosis-an assessment using single energy quantitative computed tomography. Eur Radiol 1992; 2:322–5.
  • 16. Huh SJ, Kim B, Kang MK, et al. Pelvic insufficiency fracture after pelvic irradiation in uterine cervix cancer. Gynecol Oncol 2002;86:264–8.
  • 17. Sakurai T, Sawada Y, Yoshimoto M, Kawai M, Miyakoshi J. Radiation-induced reduction of osteoblast differentiation in C2C12 cells. J Radiat Res 2007;48:515–21.
  • 18. Gal TJ, Munoz-Antonia T, Muro-Cacho CA, Klotch DW. Radiation effects on osteoblasts in vitro, a potential role in osteoradionecrosis. Arch Otolaryngol Head Neck Surg 2000;126:1124–8.
  • 19. Szymczyk KH, Shapiro IM, Adams CS. Ionizing radiation sensitizes bone cells to apoptosis. Bone 2004; 34:148–56.
  • 20. Sawajiri M, Mizoe J, Tanimoto K. Changes in osteoclasts after irradiation with carbon ion particles. Radiat Environ Biophys 2003;42:219–23.
  • 21. Ma J, Shi M, Li J, et al. Senescence-unrelated impediment of osteogenesis from Flk1+ bone marrow mesenchymal stem cells induced by total body irradiation and its contribution to long-term bone and hematopoietic injury. Haematologica 2007; 92:889–96.
  • 22. Willey JS, Lloyd SA, Robbins ME, et al. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res 2008; 170:388-92.