Farklı ışık uygulama mesafelerinin kompozit rezinlerin yüzey sertliği üzerine etkileri

Bu çalışmanın amacı, ışık kaynağı ve rezin yüzeyi arasında farklı mesafeler uygulanarak polimerize edilen Siloran ve farklı kompozit restoratif materyallerin yüzey sertlik değerlerini incelemektir. Çalışmada 5 farklı kompozit rezin kullanıldı Filtek Silorane, Filtek Supreme, Premise, Grandio, Inten-S ve her bir grup için 2 mm kalınlığında 20’şer örnek hazırlandı n=100 . Kompozit grupları kendi içinde 5’er örnekten oluşan 4 alt gruba ayrıldı. Bu gruplar ışık kaynağı ile rezin yüzeyi arasında polimerizasyon işlemi sırasında uygulanacak olan mesafelere [0 mm yüzey ile temas , 3 mm, 6 mm ve 9 mm] göre belirlendi. Kompozit örnekler, 5 mm çapında ve 2 mm yüksekliğinde kullanılarak hazırlandı. Tabakalama tekniği ile yerleştirilen kompozit rezinler şeffaf bant ve siman paslanmaz çelik kalıplar camı arasında parmak basıncıyla sıkıştırıldı. Polimerizasyon sırasında ışık cihazı ucu ile kompozit rezin yüzeyi arasındaki 4 farklı mesafenin standardizasyonunu sağlamak için 0 mm, 3 mm, 6 mm ve 9 mm yüksekliğe sahip yüzükler kullanıldı. Çalışmada LED ışık cihazı kullanıldı ve örnekler 40 s süre ile polimerize edildi. Her bir örneğin üst ve alt yüzeyleri için 3’er ölçüm yapıldı ve bu ölçümlerin ortalamaları alınarak sertlik değerleri belirlendi. İki yönlü ANOVA’ya göre, restoratif materyaller ile ışık kaynağı ve rezin yüzeyi arasındaki mesafe, örneklerin alt ve üst yüzeyi için istatistiksel olarak anlamlıdır. En düşük sertlik değerleri 9 mm’de gözlendi. En yüksek sertlik değerleri ise Grandio grubunda gözlendi. Alt ve üst yüzeyler kıyaslandığında, tüm çalışma gruplarında istatistiksel olarak anlamlı fark bulundu. Eğer ışık ucu ile rezin yüzeyi arasındaki mesafe artarsa, yeterli polimerizasyon derinliğini sağlamak için üreticilerin tavsiye ettiği polimerizasyon süresi uzatılmalıdır

Effects of Different Curing Tip Distances on Surface Hardness of Composite Resins

The purpose of this study was to evaluate the surface hardness value of Silorane and different composite restorative materials upon exposure to different distances between the light source and the resin surface. Five different composite resins used in the study Filtek Silorane, Filtek Supreme, Premise, Grandio, Inten- S . Twenty samples were prepared for each group n=100 and the resin thickness was 2 mm. Composite groups were divided into 4 sub-groups with 5 samples each. These groups were determined according to distances [0 mm surface contact , 3 mm, 6 mm and 9 mm] to be applied during the polymerization process between the light source tip and resin surface. The composite samples were prepared using stainless steel molds with a 5 mm diameter cavity and heights of 2 mm. The composite resins were placed as incremental, covered by transparent mylar strips at the top and bottom and compressed with finger pressure between glass slides. During the polymerization to standardize the distances between the tip of the units and the resin composite surface, rings corresponding in height to distances were used. LED light device was used in this study and samples were polymerized for 40 s. For each sample 3 indentations were made at the top and bottom surfaces and averaged to determine the hardness value. According to the 2-way-ANOVA, the restorative materials and distance between the light source and resin surface were statistically significant for the bottom and the top surface of the specimens. The lowest hardness was observed in 9 mm. The highest VHV was observed in Grandio group. When comparing the top and bottom surfaces, there were statistically significant differences in all study groups. To ensure adequate depth of cure, manufacturers’ recommended curing times should be extended whenever curing light tip distances are increased.

___

  • Hammesfahr PD, O’Connor MT, Wang X. Light curing technology: past, present and future. Compend Contin Educ Dent Suppl 2002; 23: 18-24.
  • Rahiotis C, Kakabovia A, Lovkidis M, Vougiouklakis G. Curing efficiency of various types of light-curing units. Eur J Oral Sci 2004; 112: 89-94.
  • De Wald JP, Ferracone JL. A comparison of four modes of evaluating depth of cure of light- activated composites. J Dent Res 1987; 66: 727-30.
  • Sobrinho LC, Lima AA, Consani S, Sinhoreti MA, Knowles JC. Influence of curing tip distance on composite Knoop Hardness Values. Braz Dent J 2000; 11: 11-7.
  • Leloup G, Holvoet PE, Bebelman S, Devaux J. Raman scattering determination of the depth of cure light activated composites: influence of different clinically relevant parameters. J Oral Rehabil 2002; 29: 510-15.
  • Prati C, Chersoni S, Montebugnoli L, Montanari G. Effect of the air, dentin and resin- based composite thichness on light intensity reduction. Am J Dent 1999; 12: 231-234.
  • Pires JAF, Cvitko E, Denehy GE, Swift EJ Jr. Effects of curing tip distance on light intensity and composite resin microhardness. Quint Int 1993; 24: 517-521.
  • Guggenberger R, Weinmann W. Exploring beyond methacrylates. Am J Dent 2000; 13: 82-4.
  • Hansen EK, Asmussen E. Visible-light curing units: Correlation between depth of cure and distance between exit window and resin surface. Acta Odontol Scand 1997; 55: 162-6.
  • Ferrecane JL, Mitchem JC, Condon JR, Todd R. Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 1997; 76: 1508-16.
  • Rueggeberg F. Contemporaray issues in photocuring. Compend Contin Educ Dent Suppl 1999; 25: 4-15.
  • Rode KM, Kawano Y, Turbino ML. Evaluation of curing light distance on resin composite microhardeness and polymerization. Oper Dent 2007; 32: 571-8.
  • Felix CA, Price RBT, Andreou P. Effect of reduced exposure times on the microhardness of 10 resin composites cured by high-power LED and QTH curing lights. J Can Dent Assoc 2006; 72: 147.
  • Yearn JA. Light-cured composites: the importance of the light source. CAL 1985; 49: 6-11.
  • Yearn JA. Factors affecting cure of visible light activated composites. Int Dent J 1985; 35: 218-25.
  • Rode KM, de Freitas PM, Lloret PR, Powell LG, Turbino ML. Micro hardness evaluation of a micro hybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser. Lasers Med Sci 2009; 24: 87-92.
  • Müjdeci A, Gökay O. Effect of bleaching agents on the microhardness of tooth-colored restorative materials. J Prost Dent 2006; 95: 286-9.
  • Cavalcante LM, Peris AR, Amaral CM, Ambrosano GMB, Pimenta LAF. Influence of polymerazition technique on microleakage and microhardness of composite restoration. Oper Dent 2003; 28: 200-6.
  • Dunn WJ, Bush AC. A comparision of polymerization by light emitting diode and halogen- based light curing units. J Am Dent Assoc 2002; 133: 335-41.
  • Sharkey S,Ray N, Burke F, Ziada H, Hannigan A. Surface hardness of light activated re- sin composites cured by two different visible- light sources: An study. Quinttessence Int 2001; 32: 401- 5.
  • Soh MS, Yap AU, Siow KS. Effectiveness of composite cure associated with different curing modes of LED lights. Oper Dent 2003; 28: 371-7.
  • Ruyter IE, Qysaed H. Conversion in different depths of ultraviolet and visible light activated composite resin materials. Acta Odontol Scand 1982; 40: 179-92.
  • Bennett A, Watta DC. Performance of two blue light emitting-diode dental light curing units with distance and irradiation-time. Dent Mater 2004; 20: 72-9.