Metagenomic DNA isolation from sheep feces and PCR detection of several rumen bacteria

Yavuz A, Ekiz Özgün D, Kenger İ, Çömlekcioğlu U. Koyun dışkısından metagenomik DNA izolasyonu ve bazı rumen bakterilerinin varlığının PZR ile tespit edilmesi. Amaç: Bu çalışmanın amacı taze ve kuru koyun dışkısından metagenomik DNA'nın izolasyonunu yapmak ve spesifik primerler kullanarak çeşitli rumen bakterilerini tespit etmektir.Gereç ve Yöntem: Metagenomik DNA izolasyonu ticari I-Genomic Dışkı DNA izolasyon kiti kullanılarak gerçekleştirildi. Anaerovibrio lipolytica, Fibrobacter succinogenes, Prevotella bryantii, Prevotella ruminicola, Ruminobacter amylophilus, Ruminococcus albus, Ruminococcus flavefaciens, Streptococcus bovis, Selenomonas ruminantium ve Succinovibrio dextrinosolvens spesifik primerler ile metagenomik DNA kullanılarak polimeraz zincir reaksiyonu yardımıyla tarandı. R. amylophilus, R. albus ve S. dextrinosolvens yokluğunu doğrulamak için 16S rRNA bölgesinin SphI ile reaksiyonu gerçekleştirildi. Bulgular: Dışkı örnekleri hızlıca kurutuldu ve yaş ağırlığının %53.72'si kaybettirildi. Taze ve kuru örneklerdeki DNA izolasyonlarından sonra DNA konsantrasyonları ve saflığı sırasıyla 25.60-59.50 ng/µL ve 1.72-1.90 arasında değiştiği belirlendi. Dışkıdaki inhibitörlerin PZR üzerinde etkisinin olmadığı görüldü. A. lipolytica, F. succinogenes, P. bryantii, P. ruminicola, R. flavefaciens, S. bovis ve S. ruminantium spesifik primerler ile tespit edildi, fakat PCR ile R. amylophilus, R. albus ve S. dextrinosolvens varlığına rastlanılmadı. 16S rRNA bölgesinin SphI ile kesimi bu sonucu doğruladı. Öneriler: Bu çalışma, doğal şartlarda kurumanın dışkı örneklerinden metagenomik DNA izolasyonu üzerine etkilerini tanımlamıştır. Ayrıca, izole edilen DNA kullanılarak çeşitli rumen bakterilerinin tespiti gerçekleştirilmiştir. Sonuç olarak kurumuş dışkıdan izole edilen metagenomik DNA'nın bakteri populasyonlarının belirlenmesinde kullanılabileceği ifade edilebilir.

Koyun dışkısından metagenomik DNA izolasyonu ve bazı rumen bakterilerinin varlığının PZR ile tespit edilmesi.

. Aim: The aim of this study was to isolate metagenomic DNA from fresh and dry sheep feces and to detect several rumen bacteria using the specific primers. Materials and Methods: The metagenomic DNA isolation was performed by using commercial I-Genomic Stool DNA Isolation Kit. Anaerovibrio lipolytica, Fibrobacter succinogenes, Prevotella bryantii, Prevotella ruminicola, Ruminobacter amylophilus, Ruminococcus albus, Ruminococcus flavefaciens, Streptococcus bovis, Selenomonas ruminantium and Succinovibrio dextrinosolvens were screened using metagenomic DNA with polymerase chain reaction and spesific primers. Reaction of 16S rRNA region with SphI was carried out to confirm the absence of R. amylophilus, R. albus and S. dextrinosolvens.Results: Fecal samples dried rapidly and lost its 53.72% of fresh mass. After the DNA isolations from fresh and dried samples, DNA concentrations and purity were varied between 25.60-59.50 ng/µL and 1.72-1.90, respectively. It was observed that fecal inhibitors had no effect on PCR. A. lipolytica, F. succinogenes, P. bryantii, P. ruminicola, R. flavefaciens, S. bovis and S. ruminantium were detected with specific primers however PCR did not reveal the presence of R. amylophilus, R. albus and S. dextrinosolvens. SphI digestion of 16S rDNA regions has confirmed this result.Conclusions: In this study, effect of drying in natural conditions on metagenomic DNA isolation from fecal samples was determined. Furthermore, PCR detection of several rumen bacteria was performed by using isolated DNA. In conclusion, it may be stated that the metagenomic DNA isolated from dried fecal samples could be an effective tool for the detection of bacterial populations.

___

  • Bekele AZ, Koike S, Kobayashi Y, 2010. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett, 305, 49-57.
  • Belanche A, de la Fuente G, Newbold CJ, 2014. Study of met- hanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol, 90, 663-677.
  • Cotta MA, Whitehead TR, Zeltwanger RL, 2003. Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Envir Microbiol, 5, 737- 745.
  • de Aguiar SC, Zeoula LM, do Prado OPP, Arcuri PB, Forano E, 2014. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis. W J Microbiol Biotechnol, 30, 2917-2926.
  • Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX, 2009. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol, 107, 245-256.
  • Durso LM, Harhay GP, Smith TP, Bono JL, DeSantis TZ, Harhay DM, Andersen GL, Keen JE, Laegreid WW, Clawson ML, 2010. Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl Env Microbiol, 76, 4858-4862.
  • Edwards U, Rogall T, Blocker H, Emde M, Bottger EC, 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res, 17, 7843-7853.
  • Fliegerova K, Tapio I, Bonin A, Mrazek J, Callegari ML, Bani P, Bayat A, Vilkki J, Kope?n? J, Shingfield KJ, Boyer F, Coissac E, Taberlet P, Wallace RJ, 2014. Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe, 29, 80-84.
  • Gudla P, Ishlak A, AbuGhazaleh AA, 2012. The effect of forage level and oil supplement on Butyrivibrio fibrisolvens and Anaerovibrio lipolytica in continuous culture fermenters. Asian-Aust J Anim Sci, 25, 234-239.
  • Han X, Yang Y, Yan, H, Wang X, Qu L, Chen Y, 2015. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA. Seq PloS One, 10, 1-12.
  • Jiao J, Lu Q, Tan Z, Guan L, Zhou C, Tang S, Han X, 2014. In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species. Anaerobe, 28, 168-177.
  • Kamra DN, 2005. Rumen microbial ecosystem. Curr Sci, 89, 124-135.
  • Kobayashi Y, 2006. Inclusion of novel bacteria in rumen microbiology: Need for basic and applied science. Anim Sci J, 77, 375-385.
  • Koike S, Kobayashi Y, 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett, 204, 361-366.
  • Koike S, Kobayashi Y, 2009. Fibrolytic rumen bacteria: Their ecology and functions. Asian-Aust J Anim Sci, 22, 131-138.
  • Koike S, Yoshitani S, Kobayashi Y, Tanaka K, 2003. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett, 229, 23-30.
  • Krause DO, Russel JB, 1996. How many ruminal bacteria are there? J Dairy Sci, 79, 1467-1475.
  • Kuhnert P, Scholten E, Haefner S, Mayor D, Frey J, 2010. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int J Syst Evol Microbiol, 60, 44-50.
  • Li F, Yang XJ, Cao YC, Li SX, Yao JH, Li ZJ, Sun FF, 2014. Effects of dietary effective fiber to rumen degradable starch ratios on the risk of sub-acute ruminal acidosis and rumen content fatty acids composition in dairy goat. Anim Feed Sci Tech, 189, 54-62.
  • McOrist AL, Jackson M, Bird AR, 2002. A comparison of five methods for extraction of bacterial DNA from human faecal samples. J Microbiol Meth, 50, 131-139.
  • Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, Cabrita J, Megraud F, 1997. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol, 35, 995-998.
  • Ramsak A, Peterka M, Tajima K, Martin JC, Wood J, Johnston ME, Aminov RI, Flint HJ, Avgustin G, 2000. Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol Ecol, 33, 69-79.
  • Singh KM, Pandya PR, Tripathi AK, Patel GR, Parnerkar S, Kothari RK, Joshi CG, 2014. Study of rumen metagenome community using qPCR under different diets. Meta Gene, 2, 191-199.
  • Sirohi SK, Singh N, Dagar SS, Puniya AK, 2012. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol, 95, 1135-1154.
  • Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y, 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol, 67, 2766-2774.
  • Tewari A, Singh SP, Singh R, Kumar D, 2013. Comparison of a new chromogenic medium with standard media for isolation and identification of Bacillus cereus. Eurasian J Vet Sci, 29, 39-42.
  • Wang RF, Wei-Wen Cao, Cerniglia CE, 1996. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Env Microbiol, 6, 1242-1247.
  • Wehausen JD, Ramey RR, Epps CW, 2004. Experiments in DNA extraction and PCR amplification from Bighorn sheep feces: The importance of DNA extraction method. J Hered, 95, 503-509.
  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ, 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 173, 697-703.
  • Wilson IG, 1997. Inhibition and facilitation of nucleic acid amplification. Appl Env Microbiol, 63, 37-41.
  • Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA, 1998. Methods for microbial DNA extraction from soil for PCR amplification. Biol Proced Online, 1, 40-47.
  • Yu Z, Morrison M, 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotech, 36, 808-813.
  • Zhang BW, Li M, Ma LC, Wei FW, 2006. A widely applicable protocol for DNA isolation from fecal samples. Biochem Gen, 44, 494-503.
  • Ziemer CJ, 2014. Newly cultured bacteria with broad diversity isolated from 8 week continuous culture enrichments of cow feces on complex polysaccharides. Appl Envir Mic, 80, 574-585.
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi