Brusella abortus S-19 aşısının liyofilizasyon öncesi farklı liyoprotektanlar ile kritik formülasyon sıcaklıklarının araştırılması

Bu çalışmada, Brusella (B.)abortus S19 aşı şuşu ile liyoprotektan karışımlarının termal analizi yapılarak kritik formülasyon sıcaklıklarının belirlenmesi, karşılaştırmalı sonuçlar ile liyofilizasyon optimizasyonu için istifade edilebilecek bilgilere ulaşılması amaçlanmıştır. S19 aşısı ile 3 farklı liyoprotektan (mannitol, sukroz, trehaloz) 3 farklı konsantrasyonda (%5, %10, %15) kullanılarak 9 farklı formülasyonun analizi termal görüntüleme cihazı olan dondurarak kurutma mikroskopu (FDM) ve Diferansiyel Termal Analiz (DTA) ile elektriksel direnç(Zsin) analizini sağlayan termal analiz cihazı ile yapılmıştır. Termal analiz ve görüntüleme cihazların kullanımıyla elde edilen kritik formülasyon sıcaklıkları ile liyoprotektan tercihi ve konsantrasyonu arasındaki ilişki araştırılmıştır.  Aşı yarı mamulü ile liyoprotektan karışımları için formülasyonların kritik sıcaklıklardaki kayda değer farklar, farklı liyoprotektan kullanıldığında gözlenmiştir. Her liyoprotektanın farklı konsantrasyonları için ise kurutma prosesinin yeni baştan dizayn edilmesini gerektiren farklar tespit edilmemiştir. Bu açıdangelecek çalışmalar için oluşturulmuş temel bir reçete üzerinden protektan madde konsantrasyonunun arttırılarak yapılacak liyofilizasyon proseslerinin yürütülmesi verim ve stabiliteyi artırabilecektir.

Investigating the critical formulation temperatures of Brucella abortus S-19 vaccine with different liyoprotectants prior to liyophilisation

The aim of this study is to determine the critical temperatures of formulations composed of B.abortus S19 vaccine strain and liyoprotectants. It also attempts to obtain the necessary information that may be beneficial for the optimisation of lyophilisation process by the help of comparative results among formulations. Thermal analysis of 9 different formulations consisting of S19 strain and each of 3 lyprotectants (mannitol, sucrose, trehalose) at 3 different concentrations (5%, 10%,15%) was carried out by freze drying microscopy (FDM), differential thermal analysis (DTA), and electrical impedance (Zsin) analysis. Correlations between liyoprotectant choice and liyoprotectant concentration were investigated by the help of critical formulation temperatures obtained through thermal analysis and screening instruments. Significant differences in the critical temperature of vaccine with liyoprotectant formulation were observed when a different liyoprotectant was used. However, differences that require the redesign of the whole drying process were not observed at the different concentrations of the same liyoprotectant. For this reason,  in the quide of a baseline recipe, evaluation of the liyophilisation process carried out through increasing the amount of liyoprotectant can be recommended to increase stability and performance.

___

  • 1.Adams GDJ, CookI, Ward KR, (2015). The Principles of Freeze-Drying. WF Wolkers, H Oldenhofeds. Cryopreservation and Freeze-Drying Protocols. Springer, New York.p. 121-143.
  • 2.Alton GG, Jones LM, Angus RD, Verger JM, (1988).Techniques for the Brucellosis Laboratory. Institut National de la Recherche Agronomique, Paris, France.
  • 3.Bandari S,Seshasai M, Reddy YRC, (2013). Optimization Of Lyophilization Cycles for Gemcitabine. Int J Pharm Pharm Sci. 5(2), 216-221.
  • 4.Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997). Rational Design of Stable Lyophilized Protein Formulatinons: Some Practical Advice. Pharm Res. 14(8), 969-975.
  • 5.Day JG, Stacey GN (2007). Cryopreservation and Freeze-Drying Protocols, Human Press, New Jersey.
  • 6.Deepak B, Iqbal Z, (2015). Lyophilization–Process and Optimization for Pharmaceuticals. IJDRA. 3(1), 30-40.
  • 7.Franks F, (2007). Freeze-drying of pharmaceuticals and biopharmaceuticals, RSC Publishing, Cambridge.
  • 8.Gaidhani KA, Harwalkar M, Bhambere D, Nirgude PS, (2015). Lyophilization/FreezeDrying – A Review. WJPR, 4(8), 516-543.
  • 9.Hajare AA, More HN, Walekar PS, Hajare DA, (2012). Optimization of Freeze Drying Cycle Protocol Using Real Time Microscopy and Integrated Differential Thermal Analysis-Electrical Impedance, Research J Pharm and Tech.5(7),985-991.
  • 10.Horn J, Friess W, (2018). Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization. Front Chem. 6(49), 1-9.
  • 11.Jenings AT, (1999). Lyophilization, Introduction and Basic Principles. CRC Press, Taylor and Francis Group, USA.
  • 12.Karagul MS, Altuntas B, (2018). Liyofilizasyon: Genel Proses Değerlendirmesi Etlik Vet Mikrobiyol Derg. 29(1), 62-69.
  • 13.Kasper JC, Friess W, (2011). The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm.78, 243-268.
  • 14.Lueckel B, Bodmer D, Helk B, Leuenberger H, (1998). Formulations of sugars with amino acids or mannitol - influence of concentration ratio on the properties of the freze-concentrate and the lyophilizate. Pharm Dev Technol, 3(3), 325-336.
  • 15.Meister E, Gieseler H, (2008). A significant comparison between collapse and glass transition temperatures. European Pharmaceutical Review. Erişim:[ https://www.europeanpharmaceuticalreview.com/article/1479/a-significant-comparison-between-collapse-and-glass-transition-temperatures/], Erişim tarihi: 15.04.2018.16.Meister E, Gieseler H, (2009). Freeze-Dry Microscopy of Protein/Sugar Mixtures: Drying Behavior, Interpretation of Collapse Temperatures and a Comparison to Corresponding Glass Transition Data. J Pharm Sci, 98(9), 3072-3087.
  • 17.Mikal MJ (2010). Mechanisms of Protein Stabilization During Freeze Drying Storage:The Relative Importance Thermodynamic Stabilization and Glassy State Relaxation Dynamics. L Rey, JC May eds. Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare, London.p. 198-232
  • 18.Nail SL, Her LM, Proffitt CPB, Nail LL, (1994). An improved microscope stage for direct observation of freezing and freze drying. Pharm Res. 11, 1098-1100.
  • 19.Oetjen GW, (1999). Freze drying. Wiley-VCH, German.
  • 20.Patel SM, Doen T, Pikal MJ, (2009). Determination of End Point of PrimaryDrying in Freeze-Drying Process Control. AAPS Pharm Sci Tech, 11(1),73-84.
  • 21.Rey L (2010). Glimpses into the Realm of Freeze-Drying Classical issues and New Ventures. 1-28. In: L Rey, JC May (Eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London.
  • 22.Ross C, Gaster T, Ward K, (2008). The Importance of Critical Temperatures in the Freeze Drying of Pharmaceutical Products. Erişim:[http://www.biopharma.co.uk/wp-content/uploads/2010/07/importance_critical_temps.pdf], Erişim tarihi: 08.10.2018.
  • 23.Searles JA, (2010). Freezing and Annealing Phenomena in Lyophilization. 52-81.In: L Rey, JC May (Eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London.
  • 24.Tang XC, Pikal MJ, (2004). Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm Res. 21(2), 191-200.
  • 25.United States Patent Office (1959): Use of dextran in freze-drying process. 2,908,614.
  • 26.Wang DQ, (2010). Formulation Characterization. L Rey, JC May eds. Freze Drying/Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London. p. 233-253
  • 27.Ward KR, (2010). The Use of Microscopy, Thermal Analysis, and Impedance Measurements to Establish Critical Formulation Parameters for Freeze-Drying Cycle Development. L Rey, JC May eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London. p. 112-135
Etlik Veteriner Mikrobiyoloji Dergisi-Cover
  • ISSN: 1016-3573
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1960
  • Yayıncı: Veteriner Kontrol Merkez Araştırma Enstitüsü Müdürlüğü
Sayıdaki Diğer Makaleler

Antiviral İlaçlar

Ali KÜÇÜK, Yakup YILDIRIM

Borrelia burgdorferi ile doğal enfekte köpeklerin nötrofil-lenfosit, monosit-lenfosit ve platelet-lenfosit oranlarının belirlenmesi

Kübra ÇAKIR, Didem PEKMEZCİ

Küçük alt ünite ribozomal RNA gen analizine dayanarak Türkiye’nin Karadeniz kıyılarından Merlangius merlangus euxinus’u (Linnaeus, 1758) enfekte eden Hysterothylacium aduncum (Nematoda: Raphidascarididae) larvasının moleküler karakterizasyonu

Gökmen Zafer PEKMEZCİ

Erken Olgunlaşma Dönemindeki Geleneksel Peynir Mikrobiyomunun Metagenomik Analizi

Sadık SAVAŞAN, Devrim BEYAZ

Probiyotik Olarak Tanımlanan Yeni Mikroorganizmalar

Şeyma DELİCE ÜRKMEZ, Ali GÜCÜKOĞLU

Kistik Ekinokokkozisli Sığır Akciğerlerinde Hücre Adezyon Moleküllerinin Araştırılması

Orhan YAVUZ, Güngör Çağdaş DİNÇEL, Sami GÖKPINAR, Ali Evren HAYDARDEDEOĞLU

Sığır, Koyun ve Keçilerin Bovine Parainfluenza 3 Virus Enfeksiyonuna Duyarlılıklarının Saha Şartlarında Serolojik Olarak Karşılaştırılması

Sibel GÜR

Zencefil’in Antibakteriyal Etkisi (Antibacterial effect of Zingiber officinale (Ginger))

Çiğdem GÜCEYÜ, Gülşen GONCAGÜL, Elçin GÜNAYDIN, Pınar AKPINAR

Atık yapan sığırlarda Anti-Neospora caninum antikorlarının yaygınlığının araştırılması

Ufuk EROL, Erdem DANYER, Selim TUNCER, Çağla KORKMAZ, Ahmet DENİZ

Zencefil’in Antibakteriyal Etkisi

Pınar Akpınar, Elçin Günaydın, Gülşen Goncagül, Çiğdem Güceyü