Probiyotik Olarak Tanımlanan Yeni Mikroorganizmalar

Tarih boyunca insanlar tarafından canlı mikroorganizmalar içeren bitkisel ve hayvansal orijinli fermente gıdalar 

Novel Microorganisms Accepted as Probiotics

 Throughout history, fermented foods from vegetable and animal origin including live microorganisms have been consumed by humans. In traditional fermented foods, natural microorganisms, called probiotics, are defined as live microorganisms that benefit the host when administered in sufficient amounts. Everyday, new bacteria, which are isolated  from  natural  sources  or  derived  from  the  current  strains  of  bacteria,  are  discovered  and  therefore  probiotic assessments and reliability of these bacteria should be investigated in depth. Recent samples of microorganisms requir-ing detailed examination are Leuconostoc mesenteroides, Bacillus subtilis natto, Clostridium butyricum, Bacteroides xylanisolvens, Akkermansia muciniphila, Fructophilic lactic acid bacteria (FLAB) and aecalibacterium prausnitzii. In this review, it is aimed to give information about some new microorganisms which have probiotic properties.


Alcantara-Hernandez RJ, Rodriguez-Alvarez JA, Valenzuela- Encinas C, Gutierrez-Miceli FA, Castanon-Gonzalez H, Marsch R, Ayora-Talavera T, Dendooven L, (2010). The bacterial community in ’taberna’ a traditional beverage of Southern Mexico. Lett Appl Microbiol. 51, 558–563.

Anonim, (2001). European Commission. E. Commission: 2001/122/EC. Commission Decision of 30 January 2001 on Authorising the Placing on the Market of a Dextran Preparation Produced by Leuconostoc mesenteroides as a Novel Food Ingredient in Bakery Products under Regulation (EC) No 258/97 of the European Parliament and of the Council (Notified Under Document Number C(2001) 174). Erişim ad- resi; =CELEX:32001D0122&from=HR, Erişim tarihi: 01.12.2018.

Anonim, (2007). Introduction of a Qualified Presumption of Safety (QPS) Approach for Assessment of Selected Microorganisms Referred to EFSA - Opinion of the Scientific Committee. Erişim adresi: doi/epdf/10.2903/j.efsa.2007.587, Erişim tarihi: 30.11.2018

Anonim, (2014). European Commission. E. Commission: 2014/907/EU. Commission Implementing Decision of 11 December 2014 Authorising the Placing on the Market of Clostridium butyricum (CBM 588) as a Novel Food Ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council (Notified Under Document C(2014) 9345). Erişim adresi: TXT/PDF/?uri=CELEX:32014D0907&from=EN, Erişim tar- ihi: 01.12.2018.

Arias AC, Murray BE, (2010). Enterococcus species, Streptococcus bovis group, and Leuconostoc species. Mandell GL, Bennett JE, Dolin R. eds. Principles and practice of Infectious Diseases. 7th ed. Churchill Livingstone Elsevier Inc, Philadelphia, USA. p.2643-2653.

Asama T, Arima TH, Gomi T, Keishi T, Tani H, Kimura Y, Tatefuji T, Hashimoto K, (2015). Lactobacillus kunkeei YB38 from honeybee products enhances IgA production in healthy adults. J Appl Microbiol. 119, 818–826.

Asama T, Kimura Y, Kono T, Tatefuji T, Hashimoto K, Benno Y, (2016). Effects of heat-killed Lactobacillus kunkeei YB38 on human intestinal environment and bowel movement: a pilot study. Benef Microbes. 7, 337–344.

Breyner NM, Michon C, de Sousa CS, Vilas Boas PB, Chain F, Azevedo V, Langella P, Chatel JM, (2017). Microbial Anti- Inflammatory Molecule (MAM) from Faecalibacterium praus- nitzii shows a protective effect on DNBS and DSSinduced coli- tis model in mice through inhibition of NF-kappaB pathway. Front Microbiol. 8, 114.

Brodmann T, Endo A, Gueimonde M, Vinderola G, Kneifel W, De Vos WM, Salminen S, Gomez-Gallego C, (2017). Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Front Microbiol. 8, 1725.

Cammarota G, Ianiro G, Bibbo S, Gasbarrini A, (2014). Gut microbiota modulation: probiotics, antibiotics or fecal micro- biota transplantation? Intern Emerg Med. 9, 365–373.

Chassard C, Delmas E, Lawson PA, Bernalier-Donadille A, (2008). Bacteroides xylanisolvens sp. nov., a xylan-degrad- ing bacterium isolated from human faeces. Int J Syst Evol Microbiol. 58(Pt 4), 1008–1013.

Cibik R, Lepage E, Talliez P, (2000). Molecular diversity of leu- conostoc mesenteroides and leuconostoc citreum isolated from traditional french cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification. Syst Appl Microbiol. 23, 267–278.

Ciprandi G, Scordamaglia A, Venuti D, Caria M, Canonica GW, (1986). In vitro effects of Bacillus subtilis on the immune re- sponse. Chemioterapia. 5, 404–407.

Collado MC, Laitinen K, Salminen S, Isolauri E, (2012). Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 72, 77–85.

. Costello EK, Gordon JI, Secor SM, Knight R, (2010). Postprandial remodeling of the gut microbiota in Burmese py- thons. ISME J. 4, 1375–1385.

. D’Angelo L, Cicotello J, Zago M, Guglielmotti D, Quiberoni A, Suarez V, (2017). Leuconostoc strains isolated fromdairy prod- ucts: response against food stress conditions. Food Microbiol. 66, 28–39.

Demoss RD, Bard RC, Gunsalus IC, (1951). The mechanism of heterolactic fermentation: a new route of ethanol formation. J Bacteriol. 62, 499-511.

Derrien M, Collado MC, Ben-Amor K, Salminen S, De Vos WM, (2008). The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 74, 1646–1648.

Derrien M, van Passel MWJ, van de Bovenkamp JHB, Schipper RG, de Vos WM, Dekker J, (2010). Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 1, 254–268.

. EFSA Panel on Biological Hazards, (2010). Scientific Opinion on the maintenance of the list of QPS biological agents inten- tionally added to food and feed. EFSA J. 8, 1–56.

EFSA Panel on Dietetic Products, Nutrition and Allergies, (2015). Scientific Opinion on the safety of ‘heat-treated milk products fermented with Bacteroides xylanisolvens DSM 23964’ as a novel food. EFSA J. 13, 1–18.

Endo A, Futagawa-Endo Y, Dicks LM (2009). Isolation and characterization of fructophilic lactic acid bacteria from fruc- tose-rich niches. Syst Appl Microbiol. 32, 593–600.

. Endo A, Irisawa T, Futagawa-Endo Y, Takano K, du Toit M, Okada S, Dicks LM, (2012a). Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int J Syst Evol Microbiol. 62, 500–504.

. Endo A, (2012b). Fructophilic lactic acid bacteria inhabit fruc- tose-rich niches in nature. Microb Ecol Health Dis. 23, 6–12.

Endo A, Tanizawa Y, Tanaka N, Maeno S, Kumar H, Shiwa Y, Okada S, Yoshikawa H, Dicks L, Nakagawa J, Arita M, (2015). Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp. BMC Genomics. 16, 1117.

Foditsch C, Santos TM, Teixeira AG, Pereira RV, Dias JM, Gaeta N, Bicalho RC, (2014). Isolation and characterization of Faecalibacteriumprausnitzii from calves and piglets. PLoS ONE. 9, e116465

Ghoddusi HB, Sherburn R, (2010). Preliminary study on the isolation of Clostridium butyricum strains from natural sourc- es in the UK and screening the isolates for presence of the type E botulinal toxin gene. Int J Food Microbiol. 142, 202–206.

Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ, (2008). The role of butyrate on colonic function. Aliment Pharmacol Ther. 27, 104–119.

Handweger S, Horowitz H, Coburn Kenneth, Kolokathis A, Wormser PG, (1990). Infection due to Leuconostoc species; Six cases and Review. Clin Infect Dis. 12, 602-610.

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME, (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 11, 506–514.

Ishiyama K, Yamazaki H, Senda Y, Yamauchi H, Nakao S, (2011). Leuconostoc bacteremia in tree patients with malig- nancies. J Infect Chemother. 17, 412-418. 32. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, Li L, Ruan B, (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 48, 186–194.

Kim D, Day DF, (1994). A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb Technol. 16, 844-848.

Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC Jr, eds., (1997). Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. Fifth edition. Philadelphia: Lippincott, p.577-650.

. Leathers TD, Hayman GT, Cote GL, (1995). Rapid Screening of Leuconostoc mesenteroides Mutants for Elevated Proportions of Alternan to Dextran. Current Microbiol. 31, 19-22.

Leuschner RGK, Robinson TP, Hugas M, Cocconcelli PS, Richard- Forget F, Klein G, Licht TR, Nguyen-The C, Querol A, Richardson M, Suarez JE, Thrane U, Vlak JM, von Wright A, (2010). Qualified presumption of safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci Technol. 21, 425–435.

Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P, (2013). Faecalibacteriumprausnitzii and human intestinal health. Curr Opin Microbiol. 16, 255–261. 38. Nakano MM, Zuber P, (1998). Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol. 52, 165–90.

Neveling DP, Endo A, Dicks LM, (2012). Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Curr Microbiol. 65, 507–515. 40. Ouwerkerk JP, van der Ark KC, Davids M, Claassens NJ, Robert Finestra T, de Vos WM, Belzer C, (2016). Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl Environ Microbiol. 82, 6983–6993.

Plovier H, Everard A, Druart C, Depommie, C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, Myridakis A, Delzenne NM, Klievink J, Bhattacharjee A, van der Ark KC, Aalvink S, Martinez LO, Dumas ME, Maiter D, Loumaye A, Hermans MP, Thissen JP, Belzer C, de Vos WM, Cani PD, (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium im- proves metabolism in obese and diabetic mice. Nat Med. 23, 107–113.

Rainey FA, (2009). Genus I. Clostridium Prazmowski 1880. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, eds. Bergey’s Manual of Systematic Bacteriol: volume 3 The Firmicutes. 9th ed., Springer, New-York. p.739–740 43. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF, (2011). Evidence for a core gut microbiota in the zebrafish. ISME J. 5, 1595–1608.

Sato R, Tanaka M, (1997). Intestinal distribution and intralumi- nal localization of orally administered Clostridium butyricum in rats. Microbiol Immunol. 41, 665–671.

Schlegel HG (1993). General Microbiology. Seventh edition. Cambridge: CU Press, p.193-233.

. Sears CL, (2005). A dynamic partnership: celebrating our gut flora. Anaerobe. 11, 247–251.

. Selhub EM, Logan AC, Bested AC, (2014). Fermented foods, microbiota, and mental health:ancient practice meets nutri- tional psychiatry.J Physiol Anthropol. 33.

Server-Busson C, Foucaud C, Leveau JY, (1999). Selection of Dairy Leuconostoc Isolates for Important Technological Properties. J Dairy Res. 66, 245-56.

Shang H, Sun J, Chen YQ, (2016). Clostridium butyricum CGMCC0313.1 modulates lipid profile, insulin resistance and colon homeostasis in obese mice. PLoS ONE. 11, e0154373.

Shimbo I, Yamaguchi T, Odaka T, Nakajima K, Koide A, Koyama H, Saisho H, (2005). Effect of Clostridium butyri- cum on fecal flora in Helicobacter pylori eradication therapy. World J Gastroenterol. 11,7520–7524.

Ulsemer P, Toutounian K, Schmidt J, Karsten U, Goletz S, (2012). Preliminary safety evaluation of a new Bacteroides xyl- anisolvens isolate. Appl Environ Microbiol. 78, 528–535.

Kaynak Göster

APA Delice Ürkmez, Ş , Gücükoğlu, A . (2019). Probiyotik Olarak Tanımlanan Yeni Mikroorganizmalar . Etlik Veteriner Mikrobiyoloji Dergisi , 30 (1) , 95-99 . DOI: 10.35864/evmd.586567

977 223

Sayıdaki Diğer Makaleler

Küçük alt ünite ribozomal RNA gen analizine dayanarak Türkiye’nin Karadeniz kıyılarından Merlangius merlangus euxinus’u (Linnaeus, 1758) enfekte eden Hysterothylacium aduncum (Nematoda: Raphidascarididae) larvasının moleküler karakterizasyonu

Gökmen Zafer PEKMEZCİ

Köpeklerde Burun Boşluğundan Pseudomonas aeruginosa’nın İzolasyonu ve Antibiyotik Duyarlılıkları

Seyfullah ZEYREK, Göksel ERBAŞ

Borrelia burgdorferi ile doğal enfekte köpeklerin nötrofil-lenfosit, monosit-lenfosit ve platelet-lenfosit oranlarının belirlenmesi


Erken Olgunlaşma Dönemindeki Geleneksel Peynir Mikrobiyomunun Metagenomik Analizi


Zencefil’in Antibakteriyal Etkisi (Antibacterial effect of Zingiber officinale (Ginger))


Laboratuvar Hayvanlarında Ötenazi Yöntemleri

Sedat GÖKMEN, Aylin PEHLİVAN, Abdurrahman AKSOY

Aydın İlinde Tüketime Sunulan Çöp Şişlerin Mikrobiyolojik Kalitesinin İncelenmesi


Atık yapan sığırlarda Anti-Neospora caninum antikorlarının yaygınlığının araştırılması


Kistik Ekinokokkozisli Sığır Akciğerlerinde Hücre Adezyon Moleküllerinin Araştırılması


Şanlıurfa’da Yerleşik Damızlık Atlarda Batı Nil Virüsü (BNV) Enfeksiyonu’nun Serolojik ve Virolojik Olarak Araştırılması

Rahime Adalet DUYUM, Taner KARAOĞLU