ŞEFTALİ ÇEKİRDEĞİNDEN ÇİNKO KLORÜR AKTİVASYONU İLE AKTİF KARBON ÜRETİMİ VE KARAKTERİZASYONU

Aktif Karbon; yapısında karbon içeren her türlü doğal ya da sentetik başlangıç maddesinden üretilebilen, sahip olduğu geniş iç yüzey alanı ve farklı çaplardaki gözenek sayısı sayesinde sıvı ve gaz uygulamalarında sıklıkla kullanılan bir adsorbandır. Bu çalışmada ülkemizde bolca üretilen şeftali meyvesinin çekirdeğinden çinko klorür ile kimyasal aktivasyon sonucu aktif karbon üretilmiştir. 3/1 emdirme oranı ve farklı karbonizasyon sıcaklıklarında (400°C, 500°C, 600°C) üretilen aktif karbonların gözenek hacmi, BET yüzey alanı, ortalama gözenek çapı ve gözenek boyut dağılımı gibi yapısal özellikleri araştırılmıştır. Şeftali çekirdeği ve aktif karbon azot gazı adsorpsiyonu, SEM görüntüleri, FTIR analizleri ve elementel analiz sonuçları ile karakterize edilmiştir. En yüksek yüzey alanına sahip (946 m2/g) aktif karbon, 500 °C ve 3/1 emdirme oranında elde edilmiştir. Sonuç olarak şeftali çekirdeğinden kimyasal aktivasyon yöntemiyle yüksek yüzey alanı ve gözenek hacmine sahip aktif karbonlar üretilir, böylece bitkisel artıkların değerlendirilmesi sağlanmış olur.

___

  • Carrott, P.J.M.S. & Carrott, M.M.L.R. (2007). Lignin-from natural adsorbent to activated carbon: A review. Bioresource Technology. 98, 2301-2312.
  • Moreno-Castilla, C. & Rivera-Utrilla, J. (2001). Carbon materials as adsorbents for the removal of pollutants from the aqueous phase. MRS Bullettin, 26, 890-894.
  • Gerçel, Ö., Özcan, A., Özcan, A.S. ve Gerçel, H.F. (2007). Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied Surface Science, 253, 4843-4852.
  • Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H. & Duan, X. (2010). Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technolgy, 101 (15) 6163-6169.
  • Basta, A.H., Fierro, V., El-Saied, H. & Celzard, A. (2009). 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology, 100, 3941-3947.
  • Ncibi, M.C., Jeanne-Rose, V., Mahjoub, B., Jean-Marius, C., Lambert, J., Ehrhardt, J.J., Bercion, Y., Seffen, M. & Gaspard, S. (2009). Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres. Journal of Hazardous Materials, 165, 240-249.
  • Zhu, G., Deng, X., Hou, M., Sun, K., Zhang, Y., Li, P. & Liang, F. (2016). Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues. Fuel Processing Technology, 144, 255-261.
  • Fierro, V., Torne-Fernandez, V. & Celzard, A. (2006). Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: Synthesis and textural characterisation. Microporous Mesoporous Materials, 92, 243–250.
  • Ramos, M.E., Bonelli, P.R., Cukierman, A.L., Ribeiro Carrott, M.M.L. & Carrott, P.J.M. (2009). Influence of thermal treatment conditions on porosity development and mechanical properties of activated carbon cloths from a novel nanofibre-made fabric. Materials Chemistry and Physics, 116, 310–314.
  • Gottipati, R., & Mishra, S. (2016). Preparation of microporous activated carbon from aegle marmelos fruit shell and its application in removal of chromium(VI) from aqueous phase. Journal of Industrial And Engineering Chemistry, 36, 355-363.
  • Barroso-Bogeat, A., Alexandre-Franco, M., Fernandez-Gonzalez, C. & Gomez-Serrano, V. (2014). FT-IR Analysis of Pyrone and Chromene Structures in Activated Carbon. Energy Fuels, 28, 4096-4103.
  • Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M.B., Dubois, M., Batisse, N. & Duclaux, L. (2010). Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials, 175, 779-788.
  • Benadjemia, M., Milliere, L., Reinert, L., Benderdouche, N. & Duclaux, L. (2011). Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Processing Technology, 92, 1203-1212.
  • Shi, Q., Zhang, J., Zhang, C., Li, C., Zhang, B., Hu, W., Xu, J. & Zhao, R. (2010). Preparation of activated carbon from cattail and its application for dyes removal. Journal of Environmental Sciences, 22, 91–97.
  • Hejazifar, M. & Azizian, S., Adsorption of cationic and anionic dyes onto the activated carbon prepared from grapevine rhytidome. Journal of Dispersion Scıence And Technology, Vol. 33, p. 846-853, 2012.
  • Lua, A.C. & Yang, T. (2005). Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 290, 505-513.
  • Boudrahem, F., Soualah, A. & Aissani-Benissad, F. (2011). Pb(II) and Cd(II) Removal from aqueous solutions using activated carbon developed from coffee residue activated with phosphoric acid and zinc chloride. Journal of Chemical & Engineering Data, 56, 1946-1955.
  • Boonamnuayvitaya, V., Sae-ung, S. & Tanthapanichakoon, W. (2005). Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separation and Purification Technology, 42, 159–168.
  • Alslaibi, T.M., Abustan, I., Ahmad, M.A. & Foul, A.A. (2013). Cadmium removal from aqueous solution using microwaved olive stone activated carbon. Journal of Environmental Chemical Engineering, 1, 589-599.
  • Abdel-Nasser A. H. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 41, 713-722.
  • Baccara, R., Bouzida, J., Fekib, M. & Montiela, A. (2009). Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. Journal of Hazardous Materials, 162, 1522–1529.
  • Liu, S.L., Wang, Y.N. & Lu, K.T. (2014). Preparation and pore characterization of activated carbon from Ma bamboo (Dendrocalamus latiflorus) by H3PO4 chemical activation. Journal of Porous Materials, 21, 459–466.