DEPREM İVME HAREKETİ ÖLÇEKLENDİRME YÖNTEMLERİNİN SSI DİNAMİK ANALİZİ ÜZERİNDEKİ ETKİSİ

Sismik dalgaların zemın tabakaları boyunca yayılması, yüzeydeki özelliklerini önemli ölçüde değiştirebilir. Bu nedenle yapıların sismik performansını etkiler. Bu etki, yapıların tasarımında veya güçlendirilmesinde kullanılan farklı zemin sınıfları için önerilen tasarım spektrumları aracılığıyla sismik kodlara (örneğin EC8) dahil edilmiştir. Bununla birlikte, standard tasarım davranış spektrumu, düzensiz spektral şekli nedeniyle gerçek bir deprem ivme hareketinin spektral davranışını tam olarak temsil edemez. Bu nedenle, bir tasarım spektrumu kullanıldığında bir yapının sismik performansı yetersiz olabilir. Bu çalışma, deprem ivme hareketlerinin D, C ve B zemin sınıfları dikkate alınarak OpenSEES'te modellenen tek açıklıklı, 1 katlı yapının sismik davranışı üzerindeki etkisini göstermeyi amaçlamaktadır. Bu amaçla iki farklı yaklaşım seçilmiştir; (i) zemin yüzeyinde kaydedilen yedi deprem ivme hareketi modifiye edilir ve modele uygulanır, (ii) yedi adet outcrop deprem ivme hareketi EC8'e göre ölçeklenir ve nonliner zemin analizi sayesinde yüzeysel deprem ivme hareketleri elde edilir ve ardından modele uygulanmır. Sonuçlar, modelin daha yumuşak zemin üzerinde olduğunda daha fazla drift tepkisine maruz kaldığını göstermektedir. Ek olarak, nonliner zemin analizinden yüzeyde elde edilen ivme hareketlerinin uygulanması, doğrudan ivme hareketleri uygulamaktan daha büyük drift tepkilerine neden olmaktadır.

INFLUENCE OF INPUT MOTION SCALING METHODS ON DECOUPLED SSI DYNAMIC ANALYSIS

Propagation of seismic waves through soil deposits may considerably alter theircharacteristics at surface. This ultimately influences the seismic performance of structures.The influences of soil deposits are included in seismic codes (e.g. Eurocode 8, EC8) by meansof proposed design response spectra for different soil classes used in design or retrofittingof structures. Nevertheless, a smooth design response spectrum cannot always representspectral response of an actual input motion over an engineering period of interest due toits irregular spectral shape. Subsequently, the seismic performance of a structure may beinsufficient when a design response spectrum is used. The interaction between soil andstructure may also affect the structural behaviour. This study aims to demonstrate theimpact of adoption of input motions and soil deposits with soil classes B, C and D on theseismic behaviour of one-bay, 1-storey structure modelled in OpenSEES For this purpose,two different approaches are chosen; (i) seven input motions recorded on ground surfaceare modified and applied to the model, (ii) seven outcrop motions are scaled according toEC8 and processed through the ideal soil deposits by conducting nonlinear site responseanalysis, then applied to the model. The results indicate that the model is exposed to moredrift responses when it is on softer soil deposit. In addition, imposing input motionsobtained at surface from nonlinear site response analysis cause higher drift responses thandirectly applying input motions.

___

  • Amirzehni, E., Taiebat, M., Finn, W. L., & DeVall, R. H. (2015). Ground motion scaling/matching for nonlinear dynamic analysis of basement walls. In Proceedings of the 11th Canadian Conference on Earthquake.
  • Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., ... & Donahue, J. L. (2013). PEER NGA-West2 Database, PEER Report 2013/03, pacific earthquake engineering research center. University of California, Berkeley.
  • Bathe, K.J. (1982) Finite element procedures in engineering analysis. Upper Saddle River, NJ; Prentice.
  • CEN, Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. CEN Brussels, 2005.
  • Elia, G. (2015). Site Response for Seismic Hazard Assessment. Encyclopedia of Earthquake Engineering.
  • Elia, G., & Rouainia, M. (2013). Seismic performance of earth embankment using simple and advanced numerical approaches. Journal of geotechnical and geoenvironmental engineering, 139(7), 1115-1129.
  • Elia, G., & Rouainia, M. (2014). Performance evaluation of a shallow foundation built on structured clays under seismic loading. Bulletin of earthquake engineering, 12(4), 1537-1561.
  • Guzel, Y. (2019). Influence of input motion selection and soil variability on nonlinear ground response analyses (Doctoral dissertation). Newcastle University.
  • Guzel, Y., Elia, G., & Rouainia, M. (2017). The effect of input motion selection strategies on nonlinear ground response predictions. In COMPDYN 2017-Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (pp. 3739-3747). National Technical University of Athens.
  • Iervolino, I., & Manfredi, G. (2008). A review of ground motion record selection strategies for dynamic structural analysis. Modern Testing Techniques for Structural Systems, 131-163.
  • Iervolino, I., Galasso, C., & Cosenza, E. (2010). REXEL: computer aided record selection for code-based seismic structural analysis. Bulletin of Earthquake Engineering, 8(2), 339-362.
  • Kaklamanos, J., Baise, L. G., Thompson, E. M., & Dorfmann, L. (2015). Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dynamics and Earthquake Engineering, 69, 207-219.
  • Kottke, A., & Rathje, E. M. (2008). A semi-automated procedure for selecting and scaling recorded earthquake motions for dynamic analysis. Earthquake Spectra, 24(4), 911-932.
  • A.H.C. Chan, User Manual for DIANA-SWANDYNE II. University of Birmingham, 1995.
  • Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.
  • Mazzoni, S., Hachem, M., & Sinclair, M. (2012). An improved approach for ground motion suite selection and modification for use in response history analysis. In XV World Conference on Earthquake Engineering. Lisboa.
  • Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, 264.
  • Pitilakis, K., Riga, E., & Anastasiadis, A. (2012). Design spectra and amplification factors for Eurocode 8. Bulletin of Earthquake Engineering, 10(5), 1377-1400.
  • Pitilakis, K., Riga, E., & Anastasiadis, A. (2013). New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 11(4), 925-966.
  • Rathje, E. M., Kottke, A. R., & Trent, W. L. (2010). Influence of input motion and site property variabilities on seismic site response analysis. Journal of geotechnical and geoenvironmental engineering, 136(4), 607-619.
  • Roesset, J. M. (1977). Soil amplification of earthquakes. Numerical methods in geotechnical engineering, 639-682.
  • Rouainia, M., & Muir Wood, D. (2000). A kinematic hardening constitutive model for natural clays with loss of structure. Géotechnique, 50(2), 153-164.
  • Shome, N., Cornell, C. A., Bazzurro, P., & Carballo, J. E. (1998). Earthquakes, records, and nonlinear responses. Earthquake Spectra, 14(3), 469-500.
  • Tönük, G., Ansal, A., Kurtuluş, A., & Çetiner, B. (2014). Site specific response analysis for performance based design earthquake characteristics. Bulletin of Earthquake Engineering, 12(3), 1091-1105.
  • Viggiani, G., & Atkinson, J. H. (1995). Stiffness of fine-grained soil at very small strains. Géotechnique, 45(2), 249-265.
  • Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of geotechnical engineering, 117(1), 89-107.
Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Eskişehir Osmangazi Üniversitesi