BİYOBOZUNUR VE ANTİ-KANSOREJEN KİTOSAN / BENZALDEHİT MODİFİKASYONU VE NANOKOMPOZİTİNİN HAZIRLANMASI

Bu çalışmada, kil tabakaları arasında kitosan/benzaldehit modifikasyonu hedeflendi. Kil olarak nano boyuttaki bentonit kullanıldı. İlk olarak kil tabakalarının sürfaktan varlığında açılması sağlandı. Kitosan/benzaldehit modifikasyonu bu tabakalar arasında kimyasal yöntemle gerçekleştirildi. Elde edilen biyokompozitin FT-IR, XRD, TGA ve SEM analiz yöntemleri kullanılarak karakterizasyonu yapıldı. Sonuç olarak, modifiye kitosanın, bentonit tabakaları arasına girerek biyobozunur ve anti kansorejen nanokompoziti sentezlendi.

Biodegradable and anti-carcinogenic chitosan/benzaldehyde modification and preparation of its nanocomposite

In this study, chitosan / benzaldehyde modification was made between the clay layers. The bentonite clay was used as a nanoscale. First opened in the presence of surfactant in the clay layers was achieved. Chitosan/benzaldehyde modification between these layers was performed by chemical methods. Characterizations of synthesized biocomposite were obtained by FT-IR, XRD, TGA and SEM analysis techniques. As a result, the modified chitosan entering between the layers of bentonite, anti-carcinogenic and biodegradable nanocomposites were synthesized.

___

  • Yavuz, M., et al., Electrorheological behavior of biodegradable modified corn starch/corn oil suspensions, Carbohydrate Polymers, 79, 2, 318-324, 2009.
  • Tilki, T., et al., Investigation of Electroreological Properties of Biodegredable Modified Cellulose/ Corn Oil Suspensions, Carbohydrate Research, 345, 672-679, 2010.
  • Julkapli, N.M., Akil, H., Degradability of kenaf dust- filled chitosan biocomposites, Materials Science and Engineering , 28, 1100–1111, 2008.
  • Wu,T., Wu, C., Biodegradable poly(lactic acid)/chitosan- modified montmorillonite nanocomposites: Preparation and characterization Polymer Degradation and Stability, 91, 9, 2198-2204, 2006.
  • Wang, S. F., et al., Biopolymer Chitosan/Montmorillonite Nanocomposites, Preparation and Characterization. Polymer Degradation and Stability, 90, 123-131, 2005.
  • Shi, O., et al., Biopolymer-clay nanoparticles composite system (Chitosan laponite) for electrochemical sensing based on glucose oxidase, Materials Science and Engineering: C, 28, 8,1372-1375, 2008.
  • Sorrentino, A., et al., Potential Perspectives of Bio- Nanocomposites for Food Packaging Applications, Trends in Food Science & Technology, 18, 84-95, 2007.
  • Rhim, J. W., et al., Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity, Journal of Agricultural and Food Chemistry, 54, 16, 5814-5822, 2006.
  • Sözer, N., Kokini, J. L., Nanotechnology and Its Applications in the Food Sector, Trends in Biotechnology, 27, 2, 82-89, 2009.
  • Kurita, K., Controlled functionalization of the polysaccharide chitin, Progress in Polymer Science 26, 1921–1971, 2001.
  • Bostan, K., et al., Kitosan ve antimikrobiyal aktivitesi, Türk Mikrobiyol Cem Derg., 37, 2, 118-127, 2007.
  • Uchi, T., Benzaldehyde as a carciogenic principle in figs. Agric. Riol Chem. 42, 7, 1449- 1451, 1978.
  • Kochi, M., et al., Antitumor activity of a benzaldehyde derivative. Cancer Trcatment Reports. 69, 5, 533-537, 1985.
  • Casariego, A., et al., Chitosan/Clay Films’ Properties as Affected by Biopolymer and Clay Micro/Nanoparticles’ Concentrations, Food Hydrocolloids, 1-8, 2009. 15. Canbaz, E. G., Güngör, N., Kil/Kitosan ve Organokil/Kitosan nanokompozitlerinin üretimi ve karakterizasyonu, itü dergisi/c fen bilimleri, 7, 1, 45-53, 2009.