Design of a MEMS-Based Capacitive Resonator for Target Analyte Detection

The present study introduces a microelectromechanical systems (MEMS) capacitive comb-finger resonator designed for the detection of different target analytes by using the detection mechanism based on the resonance frequency shift. This kind of applications is generally needed for a sensing layer capable of absorbing the desired target species in a molecular level, resulting in a change in the mass of the resonator. Therefore, a conceptual fabrication model is also described to form such a layer on the sensor. The dimension of the designed resonator structure is nearly 1766 μm×1998 μm, and the structural thickness of the sensor is planned to be 35 μm thick. Moreover, the design values of rest capacitance and resonance frequency of the structure are nearly 1 pF and 49 kHz, respectively. The inverse of the mass responsivity of the design given in the study is calculated as 370 pg/Hz. In addition to theoretical calculations, the mechanical and electrical simulations are also performed to verify the results.

___

1. Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P. Hunziker, J. P. Ramseyer, E. Meyer, M. Hegner, Ch. Gerber, "Label-free protein assay based on a nanomechanical cantilever array", Nanotechnology, vol. 14, no. 1, pp. 86-90, Dec., 2002. [Crossref]

2. L. G. Carrascosa, M. Moreno, M. Álvarez, L. M. Lechuga, "Nanomechanical biosensors: A new sensing tool", Trends in Analytical Chemistry, vol. 25, no. 3, March, 2006. [Crossref]

3. M. C. Horrillo, M. J. Fernández, J. L. Fontecha, I. Sayago, M. García, M. Aleixandre, J. P. Santos, L. Arés, J. Gutiérrez, I. Gràcia, C. Cané, "Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings", Thin Solid Films, vol. 467, no.1-2, pp. 234-8, Nov., 2004. [Crossref]

4. Y. Dong, W. Gao, Q. Zhou, Y. Zheng, Z. You, "Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds", Analytica Chimica Acta, vol. 671, no. 1-2, pp. 85-91, June 2010. [Crossref]

5. S. S. Bedair, Gary K. Fedder, "CMOS MEMS Oscillator for Gas Chemical Detection", IEEE Sensors 2004, Vienna, Austria, 2004, pp. 955-958.

6. B. Charlot, G. Sassine, A. Garraud, A. Giani, P. Combette, "Micropatterning and casting PEDOT-PSS/DMSO layers", Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, 2012, pp. 196-9.

7. K. Khosraviani, A. M. Leung, "Stress anisotropy compensation of the sputter-deposited metal thin films by variable bias voltage", J Micromech and Microeng, vol. 23, no. 8, pp. 085005 (7pp), June, 2013. [Crossref]

8. B. N. Johnson, R. Mutharasan, "Biosensing using dynamic mode cantilever sensors: A review", Biosen and Bioelect, vol. 32, no. 1, pp. 1-18, Feb., 2012. [Crossref]

9. A. Mehta, S. Cherian, D. Hedden, T. Thundat, "Manipulation and controlled amplification of Brownian motion of microcantilever sensors", Appl Phys Lett, vol. 78, no. 11, pp. 1637-9, March, 2001. [Crossref]

10. T. Ikehara, J. Lu, M. Konno, R. Maeda, T. Mihara, "A high quality-factor silicon cantilever for a low detection-limit resonant mass sensor operated in air", J Micromech Microeng, vol. 17, no. 12, pp. 2491-4, Nov., 2007. [Crossref]

11. E. Bayraktar, D. Eroglu, A. T. Ciftlik, H. Kulah, "A MEMS based gravimetric resonator for mass sensing applications", IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 2011, pp. 817-20. [Crossref]

12. D. Eroglu, E. Bayraktar, H. Kulah, "A laterally resonating gravimetric sensor with uniform mass sensitivity and high linearity", 16th Int Solid-State Sensors, Actuators Microsystems Conference, Beijing, China, 2011, pp., 2255-8. [Crossref]

13. M. Vagia, A. Tzes, "A literature review on modeling and control design for electrostatic microactuators with fringing and squeezed film damping effects", 2010 American Control Conference, Baltimore, MD, USA, 2010, pp. 3390-402. [Crossref]

14. M. Bao, H. Yang, "Squeeze film air damping in MEMS", Sensors and Actuators A: Physical, vol. 136, no. 1, pp. 3-27, May, 2007. [Crossref]

15. W. Wang, J. Jia, J. Li, "Slide film damping in microelectromechanical system devices", Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, vol. 227, no. 4, pp. 162-70, August, 2013. [Crossref]

16. T. R. Albrecht, P. Grütter, D. Horne, D. Rugar, "Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity", Journal of Applied Physics, vol. 69, no. 2, pp. 668-73, Jan., 1991. [Crossref]

17. W. C. Chen, W. Fang, S. S. Li, "A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits", J Micromech Microeng, vol. 21, no. 6, pp. 065012 (15pp), May, 2011. [Crossref]

18. P. Råback, M. Malinen, J. Ruokolainen, A. Pursula, T. Zwinger, Eds. (May, 2019). Elmer Models Manual. CSC-IT Center for Science.

19. James Ahrens, Berk Geveci, Charles Law, "ParaView: An End-User Tool for Large Data Visualization", Visualization Handbook, 1st Ed., Elsevier, 2005, ch. 36, pp. 717-31. [Crossref]

20. Steve T. Cho "Batch-dissolved wafer process for low-cost sensor applications", Proc SPIE Micromachining and Microfabrication Process Technology, vol. 2639, Sept., 1995.

21. M. M. Torunbalci, E. Tatar, S. E. Alper, T. Akin, "Comparison of two alternative silicon-on-glass microfabrication processes for MEMS inertial sensors", Eurosensors XXV, Athens, Greece, 2011, pp. 900-3. [Crossref]

22. S. Tez, T. Akin, "Comparison of two alternative fabrication processes for a three-axis capacitive accelerometer", Procedia Engineering, vol. 47, pp. 342-5, 2012. [Crossref]

23. J. Verd, G. Abadal, J. Teva, M. V. Gaudo, A. Uranga, X. Borrise, F. Campabadal, J. Esteve, E. F. Costa, F. Perez-Murano, Z. J. Davis, E. Forsén, A. Boisen, N. Barniol, "Design, Fabrication, and Characterization of a Submicroelectromechanical Resonator with Monolithically Integrated CMOS Readout Circuit", Journal of Microelectromechanical Systems, vol. 14, no. 3, pp. 508-19, June, 2005. [Crossref]

24. J. Verd, U.G. Abadal, J. L. Teva, F. Torres, J. Lopez, F. Perez-Murano, J. Esteve, N. Barniol, "Monolithic CMOS MEMS Oscillator Circuit for Sensing in the Attogram Range", IEEE Electron Device Letters, vol. 29, no. 2, pp. 146-8, Feb., 2008. [Crossref]

25. K. L. Dorsey, S. S. Bedair, G. K. Fedder, "Gas chemical sensitivity of a CMOS MEMS cantilever functionalized via evaporation driven assembly", J Micromech Microeng vol. 24, no. 7, pp. 075001 (8pp), May, 2014. [Crossref]

26. N. Shiraishi, M. Kimura, Y. Ando, "Development of PMMA-based gas sensor and its evaluation using a VOC dilution flow system", Microelectronic Engineering, vol. 119, pp. 115-21, May, 2014. [Crossref]

27. C. Carron, P. Getz, S. M. Heinrich, F. Josse, O. Brand, "Cantilever-based resonant microsensors with integrated temperature modulation for transient chemical analysis", 18th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2015), Anchorage, Alaska, USA, 2015, pp. 1511-4. [Crossref]

28. C. Kim, P. Getz, M. G. Kim, O. Brand, "Room-Tempearutre CO2 Sensing Based on Interdigitated Capacitors and Resonant Cantilevers", 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2017), Kaohsiung, Taiwan, 2017, pp. 1532-5. [Crossref]

29. Y. Bao, S. Cai, H. Yu, T. Xu, P. Xu, X. Li, "Resonant-gravimetric particle sensors with air-filtering cantilever fabricated in low-cost non-SOI silicon", IEEE Micro Electro Mechanical Systems (MEMS 2018), Belfast, Northern Ireland, UK, 2018, pp. 908-11. [Crossref]

30. T. Soganci, H.C. Soyleyici, M. Ak, "A soluble and fluorescent new type thienylpyrrole based conjugated polymer: Optical, electrical and electrochemical properties", Physical Chemistry and Chemical Physic 18, 14401, 2016. [Crossref]