Optimally Designed PID Controller for a DC-DC Buck Converter via a Hybrid Whale Optimization Algorithm with Simulated Annealing

A new design approach is presented in this study for tuning of proportional-integral-derivative (PID) controller parameters in a DC–DC buck converter utilizing a hybrid whale optimization algorithm (WOA) with simulated annealing (SA), namely the WOASAT algorithm, which uses a tournament selection mechanism. The proposed algorithm’s efficacy ensures that the optimum PID controller parameters are tuned quickly and that the quality of tuning is high. A time domain performance index is utilized to validate the proposed WOASAT-based PID controller’s performance. In addition, from the comparative results of statistical analysis, frequency response analysis, transient response analysis, disturbance rejection analysis, and performance indices analysis, the proposed WOASAT-PID controller was found to be more efficient than the SA-PID controller and WOA-PID controller in enhancing the buck converter’s transient response.

___

1. M.H. Rashid, "Power Electronics: Circuits, Devices and Applications", 3rd ed., Upper Saddle River, NJ, USA, 2003.

2 S. Ekinci, B. Hekimoğlu, S. Kaya, "Tuning of PID controller for AVR system using salp swarm algorithm", in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 2018, pp. 424-429. [CrossRef]

3. S. Duman, N. Yörükeren, İ. H. Altaş, "Gravitational search algorithm for determining controller parameters in an automatic voltage regulator system", Turk J Elec Eng & Comp Sci, vol. 24, no. 4, pp. 2387-2400, 2016. [CrossRef]

4. M. J. Blondin, J. Sanchis, P. Sicard, J. M. Herrero, "New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder-Mead algorithm", Appl. Soft Comput., vol. 62, pp. 216-229, 2018. [CrossRef]

5. A. Jalilvand, H. Vahedi, A. Bayat, "Optimal tuning of the PID controller for a buck converter using bacterial foraging algorithm", in 2010 International Conference on Intelligent and Advanced Systems (ICIAS), Manila, Philippines, 2010, pp. 1-5. [CrossRef]

6. M. Yaqoob, Z. Jianhua, F. Nawaz, T. Ali, U. Saeed, R. Qaisrani, "Optimization in transient response of DC-DC buck converter using firefly algorithm", in 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), Bucharest, Romania, 2014, pp. 347-51. [CrossRef]

7. O.T. Altinoz, H. Erdem, "Evaluation function comparison of particle swarm optimization for buck converter", in 2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Pisa, Italy, 2010, pp. 798-802. [CrossRef]

8. K.D. Wilkie, M.P. Foster, D.A. Stone, C.M. Bingham, "Hardware-in-the-loop tuning of a feedback controller for a buck converter using a GA", in 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, Italy, 2008, pp. 680-4. [CrossRef]

9. B. Hekimoğlu, S. Ekinci, S. Kaya, "Optimal PID controller design of DC-DC buck converter using whale optimization algorithm", in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 2018, pp. 473-8. [CrossRef]

10. M.M. Mafarja, S. Mirjalili, "Hybrid whale optimization algorithm with simulated annealing for feature selection", Neurocomputing, vol. 260, pp. 302-12, 2017. [CrossRef]

11. S. Mirjalili, A. Lewis, "The whale optimization algorithm", Adv Eng Soft vol. 95, pp. 51-67, 2016. [CrossRef]

12. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, "Optimization by simulated annealing", Science, vol. 220, no. 4598, pp. 671-80, 1983. [CrossRef]

13. R.W. Erickson, D. Maksimovic, "Fundamentals of Power Electronics", 2nd ed., Kluwer Academic Publishers, New York, USA, 2004.

14. D.W. Hart, "Power Electronics", McGraw Hill, New York, NY, USA, 2011.

15. K. Smedley, S. Cuk, "Switching flow-graph nonlinear modelling technique", in 23rd Annual IEEE Power Electronics Specialists Conference (PESC'92 Record), Toledo, Spain, 1992, pp. 1173-80 vol. 2.

16. B. Hekimoğlu, S. Ekinci, "Nonlinear modeling and simulation of DC-DC buck converter using switching flow-graph method", DUMF J Eng, vol. 9, no. 1, pp. 51-60, 2018.

17. M. Veerachary, "Analysis of fourth-order double boost converter", in 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 2014, pp. 1-6. [CrossRef]

18. M. Abbasi, A. Afifi, M.R.A. Pahlavani, "Signal flow graph modeling and disturbance observer based output voltage regulation of an interleaved boost converter", in 2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), Tehran, Iran, 2016, pp. 464-9. [CrossRef]

19. B.C. Kuo, "Otomatik Kontrol Sistemleri", (7. Baskıdan Çeviri: Atilla Bir), Literatür Yayıncılık, Istanbul, Turkey, 2009.

20. Z.L. Gaing, "A particle swarm optimization approach for optimum design of PID controller in AVR system", IEEE Trans Energy Convers, vol. 19, no. 2, pp. 384-91, 2004. [CrossRef]

21. S. Ekinci, B. Hekimoğlu, "Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system", IEEE Access, vol. 7, pp. 39935-47, 2019. [CrossRef]

22. S. Chatterjee, V. Mukherjee, "PID controller for automatic voltage regulator using teaching-learning based optimization technique", Int J Electr Power Energy Syst, vol. 77, pp. 418-29, 2016. [CrossRef]

23. A. Sikander, P. Thakur, R.C. Bansal, S. Rajasekar, "A novel technique to design cuckoo search based FOPID controller for AVR in power systems", Comput Electr Eng, vol. 70, pp. 261-74, 2018. [CrossRef]

24. R.C. Dorf, R.H. Bishop, "Modern Control Systems," 5th ed., Prentice Hall, Upper Saddle River, NJ, USA, 2010.

25. S. Ekinci, A. Demiroren, "PSO based PSS design for transient stability enhancement", IU-JEEE, vol. 15, no. 1, pp. 1855-62, 2015.