An Insight into the Impact of Solar and Wind Powers’ Probability Distributions on Distribution Network Investments

With the introduction of renewable generators, the investment challenges have also increased recently because of the associated stochastic behaviors. Their impacts in terms of the investment related to the distribution network could be different depending on the probability distribution of the corresponding renewable generators, historical-data modeling, and network structure. Therefore, the impacts of the probability distributions of wind power plants (WPPs) and solar power plants (SPPs) are analyzed thoroughly for different case studies by using a convolution-based distribution network planning (DNP) model. The following six cases are considered: the 1) integration of only WPPs considering one scenario of load, wind, and solar powers, 2) integration of only WPPs considering four scenarios, 3) integration of only SPPs considering one scenario, 4) integration of only SPPs considering four scenarios, 5) integration of both WPPs and SPPs considering one scenario, and 6) integration of both WPPs and SPPs considering four scenarios. The results show that considering the four scenarios is more suitable for a risk-averse approach planning, as the chance constraints are formulated separately for all the scenarios. However, the probability distribution of a different generation technology exerts a significant impact on the investment results of DNP.

___

1. P. S. Georgilakis, N. D. Hatziargyriou, "A review of power distribution planning in the modern power systems era: Models, methods and future research", Electr Power Syst Res, vol. 121, pp. 89-100, 2015. [CrossRef]

2. A. Garry, F. Cadoux, M. C. Alvarez-Herault, N. Hadjsaid, "Risk aversion model of distribution network planning rules considering distributed generation curtailment", Int J Electr Power Energy Syst, vol. 99, pp. 385-393, 2018. [CrossRef]

3. L. Zhao, Y. Huang, Q. Dai, L. Yang, F. Chen, L. Wang, K. Sun, J. Huang, Z. Lin, "Multistage active distribution network planning with restricted operation scenario selection", IEEE Access, vol. 7, pp. 121067-80, 2019. [CrossRef]

4. A. Rastgou, S. Bahramara, J. Moshtagh, "Flexible and robust distribution network expansion planning in the presence of distributed generators", Int Trans Electr Energy Syst, vol. 28, pp. 1-26, 2018. [CrossRef]

5. M. Wu, L. Kou, X. Hou, Y. Ji, B. Xu, H. Gao, "A bi-level robust planning model for active distribution networks considering uncertainties of renewable energies", Int J Electr Power Energy Syst, vol. 105, pp. 814-22, 2019. [CrossRef]

6. R. Hemmati, R. A. Hooshmand, N. Taheri, "Distribution network expansion planning and DG placement in the presence of uncertainties", Int J Electr Power Energy Syst, vol. 73, pp. 665-73, 2015. [CrossRef]

7. A. Soroudi, M. Ehsan, R. Caire, N. Hadjsaid, "Hybrid immune-genetic algorithm method for benefit maximisation of distribution network operators and distributed generation owners in a deregulated environment", IET Gener Transm Distrib, vol. 5, no. 9, pp. 961-72, 2011. [CrossRef]

8. H. Yu, C. Y. Chung, K. P. Wong, J. H. Zhang, "A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties", IEEE Trans Power Syst, vol. 24, no. 3, pp. 1568-76, 2009. [CrossRef]

9. P. Salyani, J. Salehi, F. Samadi Gazijahani, "Chance constrained simultaneous optimization of substations, feeders, renewable and non-renewable distributed generations in distribution network", Electr Power Syst Res, vol. 158, pp. 56-69, 2018. [CrossRef]

10. A. Bagheri, H. Monsef, H. Lesani, "Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions", Int J Electr Power Energy Syst, vol. 73, pp. 56-70, 2015. [CrossRef]

11. B. Qi, J. Chen, Y. Zhao, P. Jiao, "Expectation-maximisation model for stochastic distribution network planning considering network loss and voltage deviation", IET Gener Transm Distrib, vol. 13, no. 2, pp. 248-57, 2019. [CrossRef]

12. H. Xing, H. Cheng, Y. Zhang, P. Zeng, "Active distribution network expansion planning integrating dispersed energy storage systems", IET Gener Transm Distrib, vol. 10, no. 3, pp. 638-44, 2016. [CrossRef]

13. P. H. Jiao, J. J. Chen, B. X. Qi, Y. L. Zhao, K. Peng, "Electricity price driven active distribution network planning considering uncertain wind power and electricity price", Int J Electr Power Energy Syst, vol. 107, pp. 422-37, 2019. [CrossRef]

14. H. Xing, Y. Fu, H. Cheng, "Active distribution network expansion planning integrating practical operation constraints", Electr Power Components Syst, vol. 45, no. 16, pp. 1795-805, 2017. [CrossRef]

15. F. Luo, T. Zhang, W. Wei, F. Li, L. Bai, C.W. Tan, Y. Liu, G. Liu, "Models and methods for low-carbon footprint analysis of grid-connected photovoltaic generation from a distribution network planning perspective", Energy Sci Eng, vol. 5, no. 5, pp. 290-301, 2017. [CrossRef]

16. M. E. Samper, F. A. Eldali, S. Suryanarayanan, "Risk assessment in planning high penetrations of solar photovoltaic installations in distribution systems", Int J Electr Power Energy Syst, vol. 104, no. 2017, pp. 724-33, 2019. [CrossRef] 17. V. V. Thang, "An optimization model for distribution system reinforcement integrated uncertainties of photovoltaic systems," Electr Eng, vol. 100, pp. 677-86, 2018. [CrossRef]

18. H. Dutrieux Baraffe, M. Cosson, J. Bect, G. Delille, B. Francois, "A novel non-intrusive method using design of experiments and smooth approximation to speed up multi-period load-flows in distribution network planning", Electr Power Syst Res, vol. 154, pp. 444-51, 2018. [CrossRef]

19. D. Stirzaker, "Probability and Random Variables a beginner's guide", Cambridge University Press, Cambridge, 2003.

20. J. Teng, "A direct approach for distribution system load flow solutions", IEEE Trans Power Deliv, vol. 18, no. 3, pp. 882-7, 2003. [CrossRef]

21. S. Haffner, L. F. A. Pereira, L. A. Pereira, L. S. Barreto, "Multistage model for distribution expansion planning with distributed generation - Part I: Problem formulation", IEEE Trans Power Deliv, vol. 23, no. 2, pp. 915-23, 2008. [CrossRef]

22. G. Munoz-Delgado, J. Contreras, J. M. Arroyo, "Distribution network expansion planning with an explicit formulation for reliability assessment", IEEE Trans Power Syst, vol. 33, no. 3, pp. 2583-96, 2018. [CrossRef]

23. B. R. Pereira Junior, A. M. Cossi, J. Contreras, J. R. S. Mantovani, "Multiobjective multistage distribution system planning using tabu search," IET Gener Transm Distrib, vol. 8, no. 1, pp. 35-45, 2014. [CrossRef]

24. P. M. Subcommitee, "The IEEE reliability test system - 1996", IEEE Trans Power Syst, vol. 14, no. 3, pp. 1010-20, 1999. [CrossRef]

25. KNMI-Climate and Services. Available from: URL: http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi. (accessed September 14, 2018).

26. T. Khatib, W. Elmenreich, "Modeling of photovoltaic systems using Matlab". John Wiley & Sons, Inc., Hoboken, New Jersey, 2016. [CrossRef]

27. T. Gönen, I. J. Ramirez-Rosado, "Review of distribution system planning models: a model for optimal multistage planning", IEE Proc C, vol. 133, no. 7, pp. 397-408, 1986. [CrossRef]

28. M. Asensio, G. Munoz-Delgado, J. Contreras, "A bi-level approach to distribution network and renewable energy expansion planning considering demand response", IEEE Trans Power Syst, vol. 32, no. 6, pp. 4298-309, 2017.[CrossRef]