Türkiye'de Anasınıflarında ve İlkokul 1, 2 ve 3. Sınıflarda Fen Öğretimi Üzerine Bir Kalite Değerlendirmesi

Bu çalışmanın amacı anasınıfları ile ilkokul bir, iki ve üçüncü sınıflarında gerçekleştirilen fen öğretimi kalitesini farklı yönlerden değerlendirmektir. Çalışmanın örneklemini Ankara'da bulunan 20 ilköğretim okulu ve bu okullarda görev yapan 80 öğretmen oluşturmuştur. Çalışma nitel araştırma deseni kullanılarak gerçekleştirilmiş olup veriler içerik analizi, gözlem ve mülakat yöntemleriyle toplanmıştır. Veri analizi ise olgubilim (fenomoloji) analizleriyle gerçekleştirilmiştir. Araştırma sonuçları, genel olarak, fen konularına gerek devlet gerekse de özel okul müfredatlarında genişçe yer verildiğini; çalışmaya dahil edilen sınıflarda fen öğretimi gerçekleştiren öğretmenlerin zayıf bir fen eğitimi altyapısına sahip olduğunu; sınıflarda fen eğitimine ayrılmış belirgin bir öğrenme alanı olmadığını; öğretmenlerin fen öğretirken çeşitli öğretim metotları ve öğrenme etkinlikleri kullandığını; öğretmenler tarafından sıklıkla kullanıldığını, öğrenmeyi değerlendirmenin öğretmenler tarafından test uygulamakla eşdeğer görüldüğünü ortaya koymuştur. Çalışmada sonuçlardan yola çıkılarak anasınıfı, ilkokul ve fen öğretmenleri, ilköğretim okulları, öğretmen yetiştiren yükseköğretim kurumları ve eğitim politika yapıcılar için çıkarımlar da sunulmaktadır

A Quality Snapshot of Science Teaching in Turkish K-3rd Grade Programs

This study aimed to capture a vivid picture of the quality of science teaching in K-3rd grade programs in Turkey. The sample comprised 80 teachers in 20 K-3rd grade programs in Ankara, Turkey. A qualitative interpretative research design was used in this study. The data were collected using content analysis, observation and interviews. Phenomenological analysis were used to analyze the study data. The results showed that science topics are broadly covered in K-3rd grade science education curricula. Majority of teachers who teach science in K-3rd grade programs lacked a sound science education background. Classrooms in general lacked a specific rich science area. Range of science activities and teaching techniques were used in teaching science to young children. Telling/explaining and questioning were the most common instructional methods used. Assessment of science learning is usually equated with testing. Several practical implications for K-3rd grade programs, teachers, teacher education programs, and policy-makers are presented.

___

  • Acat, M. B., Karadag, E., & Kaplan, M. (2012). Learning environments of science and technology course in rural areas: An assessment study in terms of constructivist learning. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18, 106-119
  • Aydin, S. & Cakiroglu, J. (2010). Teachers' views related to the new science and technology curriculum: Ankara case. Elementary Education Online, 9(1), 301-315, Retrieved on April 10, 2014 from http://ilkogretim-online.org.tr/vol9say1/v9s1m23.pdf
  • Bailey, D. B. (2002). Are critical periods critical for early childhood education? The role of timing in early childhood pedagogy. Early Childhood Research Quarterly, 17(3), 281-94.
  • Black, P. & Wiliam, D. (1998). Inside the black box: raising standards through classroom assessment. Phi Delta Kappan, 80(2), 139-148.
  • Blatchford, P., Bassett, P., Goldstein, H., & Martin, C. (2003). Are class size differences related to pupils' educational progress and classroom processes? Finding from the Institute of Education Class Size Study of children aged 5-7 Years. British Educational Research Journal, 29(5), 709-730,
  • Brenneman, K. (2011). Assessment for preschool science learning and learning environments. Early Childhood http://ecrp.uiuc.edu/v13n1/brenneman.html adresinden erişildi. and Practice, 13(1). 20 Temmuz 2012 tarihinde
  • Cambell, C. & Jobling, W. (2010). A snapshot of science education in kindergarten settings. International Research in Early Childhood Education, 1(1), 3-20.
  • Chalufour, I. (2010). Learning to teach science: Strategies that support teacher practice. Early Childhood Research and Practice. Collected Papers from the SEED Conference. 10 Temmuz 2012 tarihinde http://ecrp.uiuc.edu/beyond/seed/chalufour.html adresinden erişildi.
  • Charlesworth, R. & Lind, K. K. (2010). Math and science for young children. Clifton Park, NY: Cengage Learning.
  • Creswell, J. W. (2007). Qualitative inquiry and research design. Choosing among five approaches. Thousand Oaks, CA: Sage Publications.
  • Darling-Hammond, L. (2000). Teacher quality and student achievement. A review of state policy evidence. Educational Policy Analysis Archives, 8(1). 26 Ağustos 2012 tarihinde http://www. epaa.asu.edu/ojs/article/download/392/515 adresinden erişildi.
  • Earthman, G. I. (2004). Prioritization of 31 criteria for school building adequacy. Baltimore, MD: American Civil Liberties Union Foundation of Maryland.
  • Ehrenberg, R. G., Brewer, D. J., Gamoran, A., & Willms, J. D. (2001). Class size and student achievement. Psychological Science in the Public Interest, 2(1), 1-30.
  • Ercan, F. & Altun, S. A. (2005). İlköğretim Fen ve teknoloji dersi 4. ve 5. sınıflar öğretim programına ilişkin öğretmen görüşleri. Yeni İlköğretim Programlarını Değerlendirme Sempozyumu Bildiri Kitabı, 211- 319. Ankara.
  • Erdoğan, M. (2007). Yeni geliştirilen dördüncü ve beşinci sınıf fen ve teknoloji dersi öğretim programının analizi: Nitel bir çalışma. Türk Eğitim Bilimleri Dergisi, 5(2), 221-254.
  • Es, H. & Sarikaya, M. (2010). A comparison of science curriculum in Ireland and Turkey. Elementary Education online.org.tr/vol9say3/v9s3m21.pdf adresinden erişildi. 9(3), 1092-1105. 10 Nisan 2014 tarihinde http://ilkogretim
  • Eurydice (2006). Avrupa okullarında fen bilgisi öğretimi. Brussels: Eurydice. 10 Nisan 2014 tarihinde http://sgb.meb.gov.tr/eurydice/kitaplar/Avrupa_Okullarinda_Fen_Bilgisi_Egitimi/Avrupa_Okull arinda_Fen_Bilgisi_Egitimi.pdf adresinden erişildi.
  • Finn, J. D., & Achilles, C. M. (1999). Tennessee's class size study: findings, implications, misconceptions. Educational Evaluation and Policy Analysis, 21(2), 97-109.
  • Fisher, K. (2000). Building better outcomes: the impact of school infrastructure on student outcomes and behaviour. Schooling Issues Digest. Canberra: Department of Education, Training and Youth Affairs.
  • Goodrum, D., Hackling, M., & Rennie, L. (2000). The status and quality of teaching and learning of science in Australian schools: A research report. Canberra: Department of Education, Training and Youth affairs.
  • Harlen, W. (2001). Research in primary science education. Journal of Biological Education, 35(2), 61-65.
  • Harlen, W. & Holroyd, C. (1997). Primary teachers' understanding of concepts of science: Impact on confidence and teaching. International Journal of Science Education, 19(1), 93-105.
  • Harms, T., Clifford, R. M. & Cryer, D. (2005). Early childhood environment rating scale. Revised edition. New York: Teachers College Press.
  • Higgins, S., Hall, E., Wall, K., Woolner, P., & McCaughey, C. (2005). The impact of school environments: A literature review. The Centre for Learning and Teaching, School of Education, Communication and Language Science, University of Newcastle.
  • Ingersoll, R. M. (1999). The problem of under qualified teachers in American secondary schools. Educational Researcher, 28(2), 26-37.
  • Kallery, M. & Psillos, D. (2001). Preschool teachers content knowledge in science: their understanding of elementary science concepts and of issues raised by children's questions. International Journal of Early Years Education, 9(3), 165-179.
  • Kelly, M. P. & Staver, J. R. (2005). A case study of one school system's adoption and implementation of an elementary science program. Journal of Research in Science Teaching, 42(1), 25-52.
  • LaParo, K., Pianta, R. & Stuhlman, M. (2004). Classroom assessment scoring system (CLASS): Findings from the Pre-K year. Elementary School Journal, 104(5), 409-426.
  • LoCasale-Crouch, J., Konold, T., Pianta, R., Howes C., Burchinal, M., Bryant, D., ... Barbarin, O. (2007). Observed classroom quality profiles in state-funded pre-kindergarten programs and associations with teacher, program, and classroom characteristics. Early Childhood Research Quarterly, 22, 3-17.
  • Moustakas, C. (1994). Phenomenological research methods. Thousand Oaks, CA: Sage
  • Murphy, C., Neil, P., & Beggs, J. (2007). Primary science teacher confidence revisited: 10 years on. Educational Research, 49(4), 415-430.
  • NAEYC (2013). Early childhood program standards and accreditation criteria and guidance for assessment. Washington, DC: National Association for the Education of Young Children.
  • National Research Council (1998). National science education standards. Washington, DC: National Academic Press.
  • Ozel, H., Yilmaz, G., Beyaz, G., Ozer, I., & Senocak, E. (2009). An investigation on classroom learning environments in primary schools. Elementary Education Online, 8(2), 493-498. 10 Nisan 2014 tarihinde http://ilkogretim-online.org.tr/vol8say2/v8s2m18.pdf adresinden erişildi.
  • Pianta, R. C., Belsky, J., Houts, R., & Morrison, F. (2007). Opportunities to Learn in America's Elementary Classrooms. Science, 315, 1795-1796.
  • Pianta, R. C., La Paro, K., Payne, C., Cox, M. & Bradley, R. (2002). The relation of kindergarten classroom environment to teacher, family, and school characteristics and child outcomes. Elementary School Journal, 102(3), 225-238.
  • Rennie, L. J., Goodrum, D., & Hackling, M. (2001). Science teaching and learning in Australian schools: Results of a national study. Research in Science Education, 31, 455-498.
  • Sackes, M. (2012). How often do early childhood teachers teach science concepts? Determinants of the frequency of science teaching in kindergarten. European Early Childhood Education Research Journal, 1, 1-16.
  • Sharp, J., Hopkin, R., & Lewthwaite, B. (2011). Teacher perceptions of science in the national curriculum: An application of the science curriculum ımplementation questionnaire in English primary schools. International Journal of Science Education, 33(17), 2407-2436.
  • Silverman, D. (2011). Interpreting qualitative data. Thosands Oaks, CA: Sage Publications.
  • Silverman, D. (2005). Doing qualitative research. London: Sage Publications.
  • Tasar, M. F. & Karaçam, S. (2008). T.C. 6-8. sınıflar fen ve teknoloji dersi öğretim programının A.B.D. Massachusetts eyaleti bilim ve teknoloji/mühendislik dersi öğretim programı ile karşılaştırılarak değerlendirilmesi. http://dhgm.meb.gov.tr/yayimlar/dergiler/Milli_Egitim_Dergisi/179.pdf adresinden erişildi. Eğitim Dergisi, 179, 195-212. 10 Nisan 2014 tarihinde
  • Telli, S., Brok, P. D., & Cakiroglu, J. (2008). Liselerde fen sınıflarında öğretmen profilleri. Milli Eğitim Dergisi, http://dhgm.meb.gov.tr/yayimlar/dergiler/Milli_Egitim_Dergisi/179.pdf adresinden erişildi. 113-123. 10 Nisan 2014 tarihinde
  • Tu, T. (2006). Preschool science environment: What is available in a preschool classroom? Early Childhood Education Journal, 33(4), 245-251.
  • Tytler, R. (2009). School ınnovation in science: Improving science teaching and learning in Australian schools. International Journal of Science Education, 31(13), 1777-1809.
  • UNESCO (2004). EFA global monitoring report 2005. Education for all. The quality imperative. Paris: United Nations Educational, Scientific and Cultural Organization.
  • Wang, J. R. & Lin, S. W. (2009). Evaluating elementary and secondary school science learning environments in Taiwan. International Journal of Science Education, 31(7), 853-872.
  • Worth, K. (2010). Science in early childhood classrooms: Content and process. Early Childhood Research and Practice, Collected Papers from the SEED (STEM in Early Education and Development) Conference. 10 Temmuz 2012 tarihinde http://ecrp.uiuc.edu/beyond/seed/worth.html adresinden erişildi.
  • Yamac, A. (2014). Becoming a first grade teacher. Elementary Education Online, 13(2), 362-376. Retrieved on 10 Nisan 2014 tarihinde http://ilkogretim-online.org.tr/vol13say2/v13s2m3.pdf adresinden erişildi.