Ortaokul Öğrencilerinin Suyun Kaldırma Kuvveti Kavramına Yönelik Bilgi Yapıları: Görüngübilimsel Bir İlksel Olarak Yüzme

Bu çalışmanın amacı ortaokul öğrencilerinin kaldırma kuvveti kavramına yönelik bilgi yapılarının hangi kavramsal değişim teorisiyle örtüştüğünü ve bilgi yapılarının neler olduğunu belirlemektir. Sekiz katılımcıyla yürütülen çalışmanın araştırma verilerinin toplanmasında, yarı yapılandırılmış görüşme tekniği kullanılmıştır. Çalışmada suyun kaldırma kuvvetiyle ilgili yedi adet amaca uygun soru kullanılmış olup, sorular görsellerle birlikte sunulmuştur. Görüşmede kullanılan sorular ve görseller aracılığıyla farklı bağlamlar oluşturulmuştur. Görüşme videoya alınarak transkripsiyon edilmiştir. Ham veriden hareketle öncelikle temel kodlar oluşturulmuş ve iki ana temayla ilişkilendirilmiştir. araştırmacı dışında bir uzmana da başvurulmuştur. İki uzman arasında .91 oranında bir uyum bulunmuştur. Sekiz öğrencinin tamamı, dörtlü ve üçlü soru setlerinden, ilk soru setine (suyun kaldırma kuvveti-kütle ilişkisine yönelik sorular) tutarsız yanıtlar vermişlerdir. İki öğrenci dışında (öğrenci 7 ve öğrenci 8) diğer öğrencilerin ikinci soru setine (suyun kaldırma kuvveti-batan hacim ilişkisine yönelik soru seti) yönelik yanıtlarında da tutarsızlık olduğu belirlenmiştir. Sonuç olarak, araştırmanın bulguları, öğrencilerin bilgi yapılarının "parçacıklı bilgi yapısı teorisine" uyumlu olduğunu destekler niteliktedir.

The Knowledge Structures about Buoyancy Concept of Secondary School Students: Phenomenological Primitive Flotation

The aim of this study is to determine the eighth grade secondary school students' knowledge structures regarding the concept of buoyancy. The study included eight students. Semi-structured interview technique was used to collect the data. Students were asked seven questions about buoyancy and the questions were presented with visual materials. Different contexts were created through the questions and visuals in the interviews. Interviews were videotaped and then transcribed. With reference to the raw data, basic codes were generated and associated with two main themes. A specialist's opinion was referred for the determination of basic concepts. The agreement between two experts was .91. All the students gave inconsistent answers to the first question set (questions about the relationship between buoyancy and mass). Except for student seven and eight, others students' responses to the second question set were inconsistent (questions about the relationship buoyancy and immersed volume). In conclusion, study findings support that knowledge structures of the students are consistent with "knowledge in pieces theory".

___

  • Abrams, E., & Southerland, S. (2001). The how's and why's of biological change: how learners neglect physical mechanisms in their search for meaning, International Journal of Science Education, 23, 1271-1281.
  • Becker, N., & Towns, M. (2012). Students' understanding of mathematical expressions in physical chemistry contexts: An analysis unsing Sherin's symbolic forms. Chemistry Education Research and Practice, 13, 209-220.
  • Carey, S. (1985). Conceptual change in childhood. Cambridge, Mass: MIT Press.
  • Carey, S. (1986). Cognitive science and science education. American Psychologist, 1,1123-1130.
  • Carey, S. (1991). Knowledge acquisition-enrichment or conceptual change? In S. Carey, & R. Gelman (Eds.), The epigenesis of mind: Essays on biology and cognition(pp. 257-292). Hillsdale, NJ: Erlbaum.
  • Chi, M. T. H. (1988). Children's lack of access and knowledge reorganization: An example from the concept of animism. In F. Weinert, & M. Perlmutter (Eds.), Memory development: Universal changes and individual differences(pp. 169-194). Hillsdale, NJ: Erlbaum.
  • Chi, M. T. H., De Leeuw, N., Chiu, M. H., & Lavacher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477.
  • Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice(pp. 3-27). New York: Kluwer Academic Publishers.
  • Clark, D. B. (2006). Longitudinal conceptual change in students' understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Cognition and Instruction, 24, 467-563.
  • Creswell, J. W. (1998).Qualitative inquiry and research design: Choosing among fiveapproaches.Thousand Oaks, California: Sage Publications.
  • Demastes, S. S. Good, R. G., & Peebles, P. (1996). Patterns of conceptual change in evolution. Journal of research in science teaching, 33, 407-431.
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105-225.
  • diSessa, A. A., & Minstrell, J. (1998). Cultivating conceptual change with benchmark lessons. In Greeno, J. G.& Goldman, S. V. (Eds.), Thinking practice and mathematicsand science learning(pp. 155-187). Mahwah, NJ: Lawrence Erlbaum Associates.
  • diSessa, A. A. (2002). Why "conceptual ecology" is good idea. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice(pp. 29-60). New York: Kluwer Academic Publishers.
  • diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004).Coherence versus fragmentation in the developmentof the concept of force.Cognitive Science, 28, 843-900.
  • Glynn, S. M., & Duit, R. (1995). Learning science meaningfully: Constructing cenceptual models. In S.M. Glynn, & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp 3-33). New Jersey: Lawrence Erlbaum Associates.
  • Greca, I.M. ,& Moreira, M. A.(2000). Mental Models, Conceptual Models, and Modelling. International Journal of Science, 22, 1-11
  • Greenbowe, T.J., & Meltzer, D. E. (2003). Studentlearning of thermochemical concepts in the context of solution calorimetry. International Journal of Science Eduction, 25, 779-800.
  • Hadfield, L. C., & Weiman, C. H. (2010) Student interpretations of equations related to the first law of thermodynamics. Journal of Chemical. Education., 87, 750-755.
  • Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student's evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36, 55-87.
  • Hatano, G., & Inagaki, K. (1994). Young children 's naive theory of biology. Cognition, 50, 171-188.
  • Ioannides, C., & Vosniadou, S. (1991). The development of the concept of force in Greek children. Paper presented at the biennial meeting of the European Society for Research on Learning and Instruction, Turku, Finland.
  • Ioannides, C., & Vosniadou, S. (2002). The changing meanings of force. Cognitive Science Quarterly, 2, 5-61.
  • Jasien P. G., & Oberem G. E. (2002). Understanding of elementary concepts in heat and temperature among college students and K-12 teachers. Journal of Chemical Education,79, 889-895.
  • Keil, F.C. (1992). The origins of an autonomous biology. In M.R. Gunnar & M. Maratsos (Eds.), Modularity and Constraintsin language and cognition; The Minnesota Symposia on Child Psychology (vol. 25, pp. 103-137). Hillsdale, NJ: Erlbaum.
  • Klein, P. D., (2006).The Challenges of scientific literacy: From the viewpoint of second-generation cognitive science,International Journal of Science Education, 28, 143-178.
  • Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: The University of Chicago Press.
  • Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont: Wadsworth Publishing Company.
  • Lawson, A. E. (2003a). The Neurological basis oflearning, development anddiscovery implications for science and mathematics instruction. Newyork: Kluwer Academic Publisers
  • Lawson, A. E. (2003b) The nature and development of hypothetico-predictive argumentation with implications for science teaching, International Journal of Science Education, 25, 1387-1408.
  • Lawson, A. E. (2003c). The neurological basis of learning, development and discovery: implications for science and mathematics instruction.Dordrecht: Kluwer.
  • Libarkin, J.C., Kurdziel, J., & Beilfuss, M., 2003, Research methodologies in science education: Mental models and cognition in education. Journal of Geoscience Education, 51, 121-126.
  • Limón, M., & Mason, L. (2002). Reconsidering conceptual change: Issues in theory and practice. New York: Kluwer Academic Publishers.
  • Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004).Epistemological resources: Applying a new epistemological framework to science instruction, Educational Psychologist, 39, 57-68.
  • Mayer, R. E. (2000). Conceptual change. In A. E. Kazdin (Ed.), Encyclopedia of psychology (Vol. 2, pp. 253-255). Washington, DC: American Psychological Association.
  • Nersessian, N. J. (1989). Conceptual change in science and in science education, Synthese, 80, 163-183.
  • Özdemir, G. (2007). Öğrencilerin kuvvet kavramına ilişkin bilgi yapılarının bir analizi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 8, 37-54.
  • Özdemir, G., & Clark D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3, 351-361.
  • Özdemir, G., & Clark D. B. (2009). Knowledge structure coherence in turkish students' understanding of force. Journal Of Research In Science Teaching, 46,570-596.
  • Palmer, D. H. (2001). Investigating the Relationship Between Students' Multiple Conceptions of Action and Reaction in Cases of Static Equilibrium. Research in Science & Technological Education,19, 193-204.
  • Pintrich, P. R. (1999). Motivational beliefs as resources for and constraints on conceptual change. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change(pp. 33-50). Amsterdam:Pergamon.
  • Pintrich, P. R., Marx, R. W., & Boyle, R. B. (1993). Beyond cold conceptualchange: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167-199.
  • Posner, G. J., Strike. K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Sci. Educ.,66,211-227.
  • Shepardson, D. P., Wee, B. Priddy, M., & Harbor, J. (2007). Students' mental models of the environment. Journal of Research in Science Teaching, 44, 327-348.
  • Sherin, B. (1996). The symbolic basis of physical intuition: A study of two symbol systems in physics instruction. Unpublished dissertation, University of California, Berkeley.
  • Sherin, B. (2000). How students invent representations of motion: A genetic account. The Journal of Mathemtical Behaviour, 19, 399-441.
  • Sherin, B. (2001). How students understand physics equations. Cognition and Instruction, 19, 479-541.
  • Sherin, B. (2006). Common sense clariŞed: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43, 535-555.
  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of Learning Sciences, 3,115-163.
  • Southerland, S. A., Abrams, E., Cummins, C. L., & Anzelmo, J. (2001). Understanding students' explanations of biological phenomena: Conceptual frameworks or p-prims? Science Education, 85, 328-348.
  • Turcotte, S. (2012). Computer-supported collaborative inquiry on buoyancy: A discourse analysis supporting the ''pieces'' position on conceptual change.Journal of Science Education and Technology, 21, 808-825.
  • Tytler, R. (1998). Children's conceptions of air pressure: Exploring the nature of conceptual change. International Journal of Science Education, 20, 929-958.
  • Ueno, N. (1993). Reconsidering p-prims theory from the viewpoint of situated cognition. Cognition and Instruction, 10, 239-248.
  • Vosniadou, S. (1991). Designing curricula for conceptual restructuring: Lessons from the study of knowledge acquisition in astronomy. Journal of Curriculum Studies, 23,219-237.
  • Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4, 45 - 70.
  • Vosniadou, S. (1996). Towards a revised cognitive psychology for new advances in learning and instruction. Learning and Instruction,6,95-109.
  • Vosniadou, S. (2002). On the nature of naive physics. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 61 - 76). New York: Kluwer Academic Publishers.
  • Vosniadou, S., & Brewer, W. F. (1992a). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
  • Vosniadou, S., & Brewer, W. F. (1992b) Theories of knowledge restructuring in development. Review of Educational Research, 57, 51-67.
  • Vosniadou, S., & Matthews, D. B. (1992). Elementary school children's comprehension of science text. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.
  • Vosniadou, S., & Kempner, L. (1993). Mental models of heat. Paper presented at the biennial meeting of the Society for Research in Child Development, New Orleans.
  • Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. CognitiveScience, 18, 123- 183.
  • Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view, International Journal of Science Education, 20, 1213-1230.
  • Vosniadou, S., Ioannides, C., Dimitrakopoulou, A., & Papademetriou, F. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11, 381-419.
  • Vosniadou, S., Baltas, A., & Vamvakoussi, X. (2007). Re-framing the conceptual change approach in learning and instruction.Amsterdam: Elsevier.
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınları.