An explanatory framework for chemistry education: The two-world model

An explanatory framework for chemistry education: The two-world model

Bu çalışma, kimyasal kavramlar veya fenomenler hakkında öğrencilerin ne düşündüklerini tespit etmede ve anlamada kimya öğretmenlerine, eğitimcilerine ve araştırmacılarına faydalı olacak açıklayıcı bir yapıyı —“iki dünya modelini”— tanıtmaktadır. Bu çalışma kapsamında, iki dünya modelinin tanıtımı için kimyasal reaksiyon kavramı örnek olarak seçilmiştir. Bu kavramı konu alan önceki çalışmalardan farklı olarak, 15-16 yaşındaki 94 öğrencinin kimyasal reaksiyon kavramını nasıl tanımladıkları iki dünya modeli kullanılarak ortaya konmuştur. Kimyasal reaksiyon kavramı hakkında öğrencilerin anlam oluşturmaları iki farklı durumda incelenmiştir. Birinci durum içerisinde, öğrenci çiftleri esterleşme reaksiyonunu konu alan kısa bir video izlediler ve öğrenci tartışmalarına imkân veren 6 soruya cevap verdiler. Diğer durum içerisinde, öğrenciler aynı esterleşme reaksiyonunu konu alan bir laboratuvar çalışması gerçekleştirdiler ve bir dizi soruya cevap verdiler. Her iki durum içerisinde, kimyasal reaksiyon kavramını ortaya koyan öğrenci argümanları karşılaştırıldı. Video izleyen öğrencilerin argümanları algılama dünyası ile ilişkili iken, laboratuar çalışması yapan öğrencilerin argümanları ise algılama ve yeniden yapılandırılmış dünya arasındaki ilişkiler üzerine kuruluydu. Elde edilen sonuçlar ışığında bu araştırma, kimya öğretmenlerine, eğitimcilerine ve araştırmacılara faydalı olacak öneriler içermektedir.

___

  • Adbo, K. & Taber, K. S. (2009). Learners’ mental models of the particle nature of matter: A study of 16-year-old Swedish science students. International Journal of Science Education, 31(6), 757-786.
  • Agung, S. & Schwartz, M. S. (2007). Students’ understanding of conservation of matter, stoichiometry and balancing equations in Indonesia. International Journal of Science Education, 29(13), 1679-1702.
  • Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563.
  • Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18(1), 53-85.
  • Bar, V. & Galili, I. (1994). Stages of children’s views about evaporation. International Journal of Science Education, 16(2), 157-174.
  • Barker, V. & Millar, R. (1999). Students’ reasoning about chemical reactions: What changes occur during a context-based post-16 chemistry course? International Journal of Science Education, 21(6), 645-665.
  • Ben-Zvi, R., Eylon, B. & Silberstein, J. (1987). Students’ visualization of a chemical reaction. Education in Chemistry, 24, 117-120.
  • Bergquist, W. & Heikkinen, H. (1990). Student ideas regarding chemical equilibrium: What written test answers do not reveal. Journal of Chemical Education, 67(12), 1000-1003.
  • Boo, H.-K. & Watson, J. R. (2001). Progression in high school students’ (aged 16-18) conceptualizations about chemical reactions in solution. Science Education, 85(5), 568-585.
  • Burke, K. A., Greenbowe, T. J. & Windschitl, M. A. (1998). Developing and using conceptual computer animations for chemistry instruction. Journal of Chemical Education, 75(12), 1658- 1660.
  • Cakmakci, G., Leach, J. & Donnelly, J. (2006). Students’ ideas about reaction rate and its relationship with concentration or pressure. International Journal of Science Education, 28(15), 1795- 1815.
  • Canpolat, N. (2006). Turkish undergraduates’ misconceptions of evaporation, evaporation rate, and vapour pressure. International Journal of Science Education, 28(15), 1757-1770.
  • Cavallo, A., McNeely, J. C. & Marek, E. A. (2003). Eliciting students’ understandings of chemica reactions using two forms of essay questions during a learning cycle. International Journal of Science Education, 25(5), 583-603.
  • Chiu, M.-H. (2007). A national survey of students’ conceptions of chemistry in Taiwan. International Journal of Science Education, 29(4), 421-452.
  • Cokelez, A., Dumon, A. & Taber, K. S. (2008). Upper secondary French students, chemical transformations and the “register of models”: A cross-sectional study. International Journal of Science Education, 30(6), 807-836.
  • De Vos, W. & Verdonk, A. H. (1985). A new road to reactions. Journal of Chemical Education, 62(3), 238-240.
  • El Bilani, R. (2007). “Nature des connaissances mises en jeu par les élèves et les enseignants lors de l’utilisation des TICE en chimie: Cas de la réaction chimique dans l’enseignement secondaire.” Doctoral thesis, Université Lumière Lyon 2, Lyon.
  • Gabel, D. L., Samuel, K. V. & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695-697.
  • Gopal, H., Kleinsmidt, J., Case, J. & Musonge, P. (2004). An investigation of tertiary students’ understanding of evaporation, condensation and vapour pressure. International Journal of Science Education, 26(13), 1597-1620.
  • Hesse, J. J. & Anderson, C. W. (1992). Students’ conceptions of chemical change. Journal of Research in Science Teaching, 29(3), 277-299.
  • Kelly, R. M. & Jones, L. L. (2007). Exploring how different features of animations of sodium chloride dissolution affect students’ explanations. Journal of Science Education and Technology, 16(5), 413-429.
  • Khanfour-Armalé, R. (2008). “Structuration par le professeur des connaissances construites par des élèves ayant travaillé en autonomie lors d’une activité expérimentale de chimie.” Doctoral thesis, Université Lumière Lyon 2, Lyon.
  • Kozma, R. B. & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949-968.
  • Krnel, D., Watson, R. & Glažar, S. A. (1998). Survey of research related to the development of the concept of ‘matter’. International Journal of Science Education, 20(3), 257-289.
  • Le Maréchal, J.-F. (1999). Modelling student’s cognitive activity during resolution of problems based on experimental facts in chemical education. In J. Leach & A. C. Paulsen (Eds.), Practical work in science education – Recent research studies (pp. 195-209). Denmark, Frederiksberg: Roskilde University Press/Holland, Dordrecht: Kluwer Academic Publishers.
  • Mulford, D. R. & Robinson, W. R. (2002). An inventory for alternate conceptions among firstsemester general chemistry students. Journal of Chemical Education, 79(6), 739-744.
  • Nahum, T. L., Naaman, R. M., Hofstein, A. & Krajcik, J. (2007). Developing a new teaching approach for the chemical bonding concept aligned with current scientific and pedagogical knowledge. Science Education, 91(4), 579-603.
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry. Journal of Chemical Education, 69(3), 191-196.
  • Novick, S. & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter: A cross-age study. Science Education, 65(2), 187-196.
  • Pekdağ, B. (2005). “Influence des relations entre le texte et l’image d’un film de chimie sur l’activité cognitive d’un apprenant.” Doctoral thesis, Université Lumière Lyon 2, Lyon.
  • Pekdağ, B. & Le Maréchal, J.-F. (2007). Memorisation of information from scientific movies. In R. Pintó & D. Couso (Eds.), Contributions from science education research (pp. 199-210). Netherlands, Dordrecht: Springer.
  • Pfundt, H. (1981). Pre-instructional conceptions about substances and transformations of substances. In W. Jung, H. Pfundt & C. von Rhoneck (Eds.), Proceedings of the international workshop on problems concerning students’ representation of physics and chemistry knowledge (pp. 320-341). Pedagogische Hochschule, Ludwigsburg.
  • Sallaberry, J.-C. (2000). Coordination des “représentations image” et des représentations rationnelles dans la construction du concept d’élément chimique. Didaskalia, 17, 101-121.
  • Sanger, M. J. & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377-398.
  • Sanmarti, N., Izquierdo, M. & Watson, R. (1995). The substantialisation of properties in pupils’ thinking and in the history of science. Science & Education, 4(4), 349-369.
  • Schmidt, H.-J. & Volke, D. (2003). Shift of meaning and students’ alternative concepts. International Journal of Science Education, 25(11), 1409-1424.
  • Sensevy, G., Tiberghien, A., Santini, J., Laube, S. & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424-446.
  • Sözbilir, M. & Bennett, J. M. (2007). A study of Turkish chemistry undergraduates’ understanding of entropy. Journal of Chemical Education, 84(7), 1204-1208.
  • Stains, M. & Talanquer, V. (2008). Classification of chemical reactions: Stages of expertise. Journal of Research in Science Teaching, 45(7), 771-793.
  • Stavridou, H. & Solomonidou, C. (1989). Physical phenomena - chemical phenomena: Do pupils make the distinction? International Journal of Science Education, 11(1), 83-92.
  • Stavridou, H. & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education, 20(2), 205-221.
  • Stefani, C. & Tsaparlis, G. (2009). Students’ levels of explanations, models, and misconceptions in basic quantum chemistry: A phenomenographic study. Journal of Research in Science Teaching, 46(5), 520-536.
  • Talanquer, V. (2006). Commonsense chemistry: A model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811-816.
  • Tan, K. C. D. & Taber, K. S. (2009). Ionization energy: Implications of preservice teachers’ conceptions. Journal of Chemical Education, 86(5), 623-629.
  • Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning situations. Learning and Instruction, 4(1), 71-87.
  • Tiberghien, A. & Megalakaki, O. (1995) Characterization of a modelling activity for a first qualitative approach to the concept of energy. European Journal of Psychology of Education, 10(4), 369-383.
  • Tiberghien, A., Vince, J., & Gaidioz, P. (2009). Design-based research: Case of a teaching sequence on mechanics. International Journal of Science Education, 31(17), 2275-2314.
  • Van Driel, J. H., De Vos, W., Verloop, N., & Dekkers, H. (1998). Developing secondary students’ conceptions of chemical reactions: The introduction of chemical equilibrium. International Journal of Science Education, 20(4), 379-392.
  • Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2), 133-170.
  • Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842.