L-Triptofan ve Melatonin’in Tuz Stresi Altında Bazı Serin Iklim Sebze Türlerinin Tohum Çimlenmesine Etkileri

Bu çalışma, farklı konsantrasyonlarda L-Triptofan ve Melatonin ön uygulamalarının, tuz stresine maruz bırakılan soğan, pırasa, siyah havuç ve turp tohumlarının çimlenme özellikleri üzerine etkilerini değerlendirmek amacıyla gerçekleştirilmiştir. Örneklere ait tohumlar, 24 saat boyunca, distile su, 50, 100, 150 ppm L-triptofan;  1.5, 3 ve 4.5 µM Melatonin çözeltilerinde karanlıkta ve 20 ° C' de çözeltilerinde bekletilmiştir. Tohumlar petri kaplarına yerleştirilmiş ve filtre kağıtları farklı NaCl konsantrasyonlarında (0, 150, 300 veya 450 mM) su ile nemlendirilmiştir. Deneme, dört tekerrürlü  tesadüf parselleri şeklinde planlanmıştır. Çalışmanın sonunda maksimum çimlenme yüzdesi, çimlenme indeksi, % 50 çimlenmeyi tamamlama süresi ve ortalama çimlenme süresi değerleri ölçülmüştür. Sonuçlar, ön uygulamaların etkilerinin, siyah havuç tohumlarının ortalama çimlenme süresi hariç, tüm türlerde ve değerlendirilen tüm özellikler üzerinde önemli etkilere neden olduğunu göstermiştir. Buna ek olarak, tuzluluk derecesinin 0 mM' den 450 mM' ye yükselmesi, tohumların tüm çimlenme parametrelerini azaltmış ve geciktirmiştir. Genel olarak, tüm melatonin dozları, 300 mM NaCl stres koşulları altında çimlenme oranını ve çimlenme endeksini bir miktar artırmıştır. Genel olarak, tüm melatonin dozlarından elde edilen sonuçlar birbirine yakın olmasına rağmen, artan L-Triptofan dozları bazı durumlarda olumsuz etkilere neden olmuştur.

The Effect of L-Tryptophan and Melatonin on Seed Germination of Some Cool Season Vegetable Species Under Salinity Stress

This study was carried out with the objective to evaluate the effects of different concentrations of L-Tryptophan and Melatonin pretreatment on germination behavior of onion, leek, black carrot, and radish seeds exposed to saline stress. Seeds of samples were soaked for 24 hours in distilled water, 50,100, 150 ppm L-tryptophan, and 1.5, 3, and 4.5 µM melatonin solutions at 20° C in darkness. Seeds were placed in Petri dishes and watered to moisten the filter paper with different concentrations of NaCl (0, 150, 300 or 450 mM). The experiment was planned in a completely randomized design with four replications. Maximum germination percentage, germination index, time to complete 50% germination and mean germination time was measured at the end of the study. The results indicated that the effect of pre-treatment was significant on all studied traits in all species except for mean germination time for black carrot seeds. In addition, all germination parameters of seeds were delayed and decreased by salinity increasing from 0 mM to 450 mM NaCl. Overall, all doses of melatonin increased the maximum germination ratio and germination index values slightly under 300 mM NaCl stress conditions. In general, results which obtained from all doses of melatonin were close to each other, whereas increasing doses of L-tryptophan caused a negative effect in some cases. 

___

  • [1] H. Ç. Özen,. and A. Onay, Bitki Fizyolojisi, Ankara, Nobel Yayınevi, 2007.
  • [2] İ. Kocaçalışkan, , Bitki Fizyolojisi. Ankara, Nobel Yayınevi, 2008.
  • [3] V. Chinnusamy, A. Jagendorf, and J. K. Zhu, “Understanding and improving salt tolerance in Plants,” Crop Science, vol. 45, no. 2, pp. 437–448, 2005.
  • [4] M. Dölarslan, and E. Gül, “Toprak Bitki İlişkileri Açısından Tuzluluk,” Türk Bilimsel Derlemeler Dergisi, c. 5, s. 2 , ss. 56-59, 2012.
  • [5] M. M. Al-Mutawa, “Effect of Salinity on Germination and Seedling Growth of Chickpea (Cicer arietinum L.) Genotypes,” International Journal of Agriculture and Biology, vol. 5, no. 3, pp. 226–229, 2003
  • [6] T. Mahmood, N. Iqbal, and H. Raza, “Growth Modulation and Ion Partitioning in Salt Stressed Sorghum (Sorghum bicolor L.) By Exogenous Supply of Salicylic Acid,” Pakıstan Journal of Botany, vol. 42, no. 5, pp. 3047–3054, 2010.
  • [7] M. A. Khan, “Halophyte seed germination: success and pitfalls,” International Symposium on Optimum Resource Utilization in Salt Affected Ecosystems in Arid and Semi-Arid Regions, Cairo, pp. 346-358. 2002.
  • [8] A. Korkmaz , Ö. Demir, F. Kocaçınar, Y. Cuci, “Biber Fidelerinde Yapraktan Yapılan Melatonin Uygulamalarıyla Üşüme Stresine Karşı Toleransın Arttırılması,” KSÜ Doğa Bilimleri Dergisi, c. 19, s. 3, ss. 348-354, 2016.
  • [9] A. B. Lerner, J. D. Case, Y. Takahashi, “Isolation of Melatonin, a Pineal Factor That Lightness Melanocytes,” Journal of American Chemical Society, vol. 80, no. 10 pp. 2587-2591, 1958.
  • [10] M. M. Posmyk, K. M. Janas, “Melatonin in Plants,” Acta Physiologia Plantarum, vol. 31, no. 1. pp. 1-11, 2009.
  • [11] R. Dubbels, R. J. Reiter, E. Klenke, A. Goebel, E. Schnakenberg, C. Ehlers, “Melatonin in Edible Plants Identified by Radioimmunoassay and by High-Performance Liquid Chromatography-Mass Spectrometry,” Journal of Pineal Research, vol. 18, no. 1, pp. 28–31, 1995.
  • [12] C. Li, P. Wang, Z. Wei, D. Liang, C. Liu, L. Yin, D. Jia, M. Fu, F. Ma, “The Mitigation Effects of Exogenous Melatonin on Salinity-Induced Stress in Malus hupehensis,” Journal of Pineal Research, vol. 53, no. 3, pp. 298-306, 2012.
  • [13] A. Korkmaz, Ö. Demir, F. Kocaçınar, Y. Cuci, “The Effects of Seed Treatment with Melatonin on Germination and Emergence Performance of Pepper Seeds under Chilling Stress,” Journal of Agricultural Sciences, vol. 23, no. 2, pp. 167-176, 2017.
  • [14] N. Zhang, H, Zhang, Q. Sun, Y. Cao, X. Li, B. Zhao P. Wu, Y. Guo, “Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production,” Scientific Reports, vol. 7, no. 503, pp. 1-15, 2017.
  • [15] I. Tiryaki, H. Keles, “Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin,” Journal of Pineal Research, vol. 52, no. 3, pp. 332-339, 2012.
  • [16] W. Frankenberger, M. Arshad, “Yield response of watermelon and muskmelon to L-tryptophan applied to the soil,” Horticultural Science, vol. 26, no. 35–37, 1991.
  • [17] S. H. Abbas, M. Sohail, M. Saleem, T. Mahmood, I.Aziz, M. Qamar, A. Majeed, M. Arif, “Effect of L-tryptophan on plant weight and pod weight in chickpea under rainfed conditions,” Science, Technology and Development, vol. 32, no. 4, pp. 277–280, 2013
  • [18] M. A. Parvez, F. Muhammad, M. Ahmad, “Effect of auxin precursor (L-tryptophan) on the growth and yield of tomato (Lycopersicon esculentum),” Pakistan Journal of Biological Science, vol. 3, no. 7, pp. 1154–1155, 2000.
  • [19] E. Antony, K. Sridhar, V. Kumar, “Effect of chemical sprays and management practices on Brachiaria ruziziensis seed, production,” Field Crops Research, vol. 211, pp. 19–26. 2017.
  • [20] S. E. A. Khodary, “Effect of salinity and tryptophan on growth and some metabolic changes in wheat and sorghum plants,” Biologica Plantarum, vol. 34, no. 5, pp. 439–443, 1992.
  • [21] E. V. Maas, and G. J., Hoffman, “Crop salt tolerance - Current assessment,” Journal of the Irrigation and Drainage Division, vol. 103, no. 2, pp. 115-134, 1977.
  • [22] C.V. Malcolm and S.T. Smith. Growing plants with salty water," Journal of the Department of Agriculture, Western Australia, vol. 12, no. 2, pp. 41-44, 1971
  • [23] M. S. Kiremit, and H. Arslan, “Effects of irrigation water salinity on drainage water salinity, evapotranspiration, and other leek (Allium porrum L.) plant parameters,” Scientia Horticulturae, vol. 201, pp. 211–217, 2016.
  • [24] F. Hanci, E. Cebeci, Y. Y. Mendi, “Effects of NaCl and CaCl2 on germination performance of Some Local Onion (Allium cepa L.) Cultivars in Turkey,” Acta Horticulturae, vol. 960, pp. 203-209, 2012.
  • [25] ISTA, International Rules for Seed Testing. Seed Sci. and Tech. 24 (suppl).International Seed Testing Association, Zürich, Switzerland. 1999.
  • [26] F. Mercedes, M. V. Carbonell, E. Martinez, “Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth,” Environmental and Experimental Botany, vol. 59, pp. 68-75, 2007.
  • [27] C. X. Li, S. L. Feng, Y. Shao, L. N Jiang, X. Y. Lu, X. L. Hao, “Effects of arsenic on seed germination and physiological activities of wheat seedlings,” Journal of Environmental Sciences, vol. 19, pp. 725–732, 2007.
  • [28] A. Y. Al-Maskri, M. M. Khan, M. J Iqbal. M. Abbas, “Germinability, vigor and electrical conductivity changes in acceleratedly aged watermelon (Citrullus lanatus T.) seeds,” Journal of Food, Agriculture, and Environment, vol. 2, no. 4, pp. 100-103, 2004.
  • [29] C. E. Specht, E. R. J. Keller, “Temperature requirements for seed germination in species of genus Allium L.,” Genetic Resources and Crop Evolution, vol. 44, pp. 509-517, 1997.
  • [30] C. Guenaoui, S. K. Taoufik, S. Smiti, M. Neffati, “Response of seed germination of Tunisian Allium ampeloprasum to temperature and salt stresses,” Revue d Ecologie, vol. 67, pp. 399-408, 2012.
  • [31] S. S. Gunisetty, and R. Khateef, “Germination and antioxidant defense system in onion (Allium cepa. L) cultivars under salt stress,” Annals of Biological Research, vol. 6, no. 11, pp. 39-46, 2015.
  • [32] A. Bolton, and P. Simon, “Variation for Salinity Tolerance During Seed Germination in Diverse Carrot [Daucus carota (L.)] Germplasm,” HortScience, vol. 54, no. 1, pp. 38-44, 2019.
  • [33] H. Ç. Kaymak, İ. Güvenç, F. Yaralı, M. F. Dönmez, “The Effects of Bio-priming with PGPR on Germination of Radish (Raphanus sativus L.) Seeds under Saline Conditions,” Turkish Journal of Agriculture and Forestry, vol. 33, no. 2, pp. 173-179, 2009
  • [34] L. C. Manchester, D. X. Tan, R. J. Reiter, W. Park, K. Monis, W. B. Qi, “Levels of melatonin in the seeds of edible plants: possible function in germ tissue protection,” Life Science, vol. 67, pp. 3023– 3029, 2000.
  • [34] L. C. Manchester, D. X. Tan, R. J. Reiter, W. Park, K. Monis, W. B. Qi, “Levels of melatonin in the seeds of edible plants: possible function in germ tissue protection,” Life Science, vol. 67, pp. 3023– 3029, 2000.
  • [35] Z. Na, S. Qianqian, Z. Haijun, C. Yunyun, S. Weeda, S. Ren, G. Yang-Dong, “Roles of melatonin in abiotic stress resistance in plants,” Journal of Experimental Botany, vol. 66, pp. 647–656, 2015.
  • [36] Y. Jiang, D. Liang, M. Liao, L. Lin, “Effects of melatonin on the growth of radish seedlings under salt stress,” Advances in Engineering Research, vol. 112, pp. 383-386, 2017.
  • [37] M. Posmyk, M. Balabusta, M. Wieczorek, E. Sliwinska, K. Janas, “Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress,” Journal of Pineal Research, vol. 46, no. 2, pp. 214–223, 2009.
  • [38] X. Lei, R. Zhu, G. Zhang, Y. Dai, “Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines,” Journal of Pineal Research, vol. 36, no. 2, pp. 126–131, 2004.
  • [39] M. M. Hussein, S. Y. Faham, A. K. Alva, “Role of Foliar Application of Nicotinic Acid and Tryptophan on Onion Plants Response to Salinity Stress,” Journal of Agricultural Science, vol. 6, no. 8, pp. 41-51, 2014.