Farklı Doldurma Şekillerinin Üç Boyutlu Yazıcılarda Üretilen Ürünlerin Mukavemetine Etkisi

Bu çalışmada, farklı doldurma şekillerinin Ergiyik Depolayarak Modelleme (Fused Deposition Modelling - FDM) yöntemi ile imal edilen ürünlerin mukavemetine etkisi deneysel olarak incelenmiştir. Çalışmada filament malzeme olarak PET-G (Polyethylene Terephthalate Glycol) kullanılmış ve farklı doldurma şekillerinde (Rectilinear, Grid, Triangular, Wiggle, Fast honeycomb, Full honeycomb), doluluk oranı (%30), işleme hızı (4200 mm/dak), nozul çapı (0,40 mm), nozul sıcaklığı (230 ºC), katman kalınlığı (0,20 mm) olmak üzere ISO 527-2 standardına uygun ürünler imal edilmiştir. Bu numunelerin çekme mukavemetlerini incelemek için çekme testleri gerçekleştirilmiş ve testlerden elde edilen sonuçlar karşılaştırılmıştır. Sonuçlar yazdırma şekillerinin ürün mukavemeti üzerinde önemli etkisi olduğunu göstermiştir. Rectilinear doldurma şeklinde imal edilen ürünlerde elde edilen mukavemet değerleri diğer doldurma şekillerine göre yaklaşık % 15 daha yüksek çıkmıştır. Ayrıca, Full honeycomb doldurma şeklinin diğer doldurma şekillerine göre daha fazla uzama gösterdiği görülmüştür. 

Effect of Filling Structures on Strength of Printed Products by 3D Printers

___

  • [1] L. Novakova-Marcincinova and J. Novak-Marcincin, “Experimental testing of materials used in fused deposition modeling rapid prototyping technology,” Advanced Materials Research, vol. 740, pp. 597-602, 2013.
  • [2] D. T. Pham, and R. S. Gault, “A comparison of rapid prototyping technologies,” International Journal of Machine Tools & Manufacture, vol. 38, no. 1, pp. 1257-1287, 1997.
  • [3] B. N. Turner, R. Strong, and S. A Gold, “A review of melt extrusion additive manufacturing processes: I. process design and modeling,” Rapid Prototyping Journal, vol. 20, no. 3, pp. 192-204, 2014.
  • [4] S. H. Ahn, M. Montero, D. Odell, S. Roundy and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS,” Rapid Prototyping Journal, vol. 8, no. 4, pp. 248-257, 2002.
  • [5] V. Nidagundi, R. Keshavamurthy and C. Prakash, “Studies on parametric optimization for fuseddeposition modelling process,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1691-1699, 2015.
  • [6] A. Boschetto and L. Bottini, “Design for manufacturing of surfaces to improve accuracy in fused deposition modeling,” Robotics And Computer- Integrated Manufacturing, vol. 37, pp. 103-114, 2016.
  • [7] W. Z. Wu, P.Geng, J. Zhao, Y. Zhang, D. W. Rosen, and H. B. Zhang, “Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing,” Materials Research Innovations, vol. 5, no. 12, pp. 5-16, 2014.
  • [8] F. Ramli, M. Jailani, H. Unjar, H. M. R.Alkahari, and M. A. Abdullah, “Integrated Recycle System Concept For Low Cost 3D-Printer Sustainability,” Proceeding of Mechanical Engineering Research, pp. 77-78, 2015.
  • [9] A. K. Sood, R. K. Ohdar, and S. S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed part,” Materials & Desing, vol. 31, no. 1, pp. 287-295, 2010.
  • [10] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, X. And Liu “Cost-effective printing of 3D objects with skin-frame structures,” ACM Trans. Graph, vol. 32, no. 5, 2013.
  • [11] S. Wilson, “A new face of aerospace honeycomb”, Materials & Design, vol. 11, no. 6, pp. 323-326, 1990.
  • [12] C. S. Lee, S.G. Kim, H. J. Kim, and S. H. Ahn, “Measurement of anisotropic compressive strength of rapid prototyping parts,” Journal of Materials Processing Technology, pp. 627-630, 2007.
  • [13] P. Calvert, “Free forming of polymers,” Polymers, pp. 585-588, 1998.
  • [14] M. Fantini, F. D. Crescenzio, F. Persiani, S.Benazzi, and G. Gruppioni, “3D restitution, restoration and prototyping of a medieval damaged skull,” Rapid Prototyping Journal, pp. 318-324, 2008.
  • [15] A. Bernard, A. Fischer, “New trends in rapid product development,” Industrial Engineering Research, 2012.
  • [16] I. Campbell, D. Bourell, and I. Gibson, “Additive manufacturing: rapid prototyping comes of age,” Rapid Prototyping Journal, pp. 255-258, 2012.
  • [17] J. Piattoni, G.P. Candini, G. Pezzi, F. Santoni, F. Piergentili, and A. Astronautica, “Plastic Cubes at: An innovative and low-cost way to perform applied space research and hands-on education”, Act a Astronautica, pp. 419-429, 2012.
  • [18] L. Kashdan, C. C. Seepersad, M. Haberman, and P. S. Wilson, “Design, fabrication, and evaluation of negative stiffness elements using SLS,” Rapid Prototyping Journal, pp. 194-200, 2012.
  • [19] M. Vaezi, S. Chianrabutra, B. Mellor,and S. Yang, “Multiple material additive manufacturing-Part 1: A Review,” Virtual and Physical Prototyping, pp. 19-50, 2013.
  • [20] D. Qiu, and N. A. Langrana,“Void eliminating tool path forex trusion based multi-material layered manufacturing,” Rapid Prototyping Journal, pp. 38-45, 2002.
  • [21] T. Birtchnell, and J. Urry ,“3D, SF and the future,” Futures, vol. 50, pp. 25-34, 2013.
  • [22] A. Lanzotti, M. Grasso, G. Staiano and M. Martorelli, “The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer,” Rapid Prototyping Journal, vol. 21, no. 5, pp. 604-617, 2015.
  • [23] M. Kam, A. İpekçi, and H. Saruhan, “Investigation of 3d printing filling structures effect on mechanical properties and surface roughness of PET-G material products,” Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 6, (ISMSIT2017) pp. 114-121, 2017.
  • [24] M. Kam, H. Saruhan, and A. İpekçi, “Investigation the effects of 3D printer system vibrations on mechanical properties of the printed products”, Sigma J. Eng and Nat. Sci., vol. 36, no. 3, pp. 655-666, 2018.
  • [25] A. İpekçi, M. Kam, and H. Saruhan, “Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products”, Journal of New Results in Science, vol. 7, no. 2, pp. 1-8, 2018.
  • [26] W. W. Focke, S. Joseph and J. Grimbeek, “Mechanical properties of ternary blends of ABS+ HIPS+ PETG”, Polymer-Plastics Technology and Engineering, vol. 48, no. 8, pp. 814-820, 2009.
  • [27] M. Kam, H. Saruhan, A. İpekçi, “Investigation the Effect of 3D Printer System Vibrations on Surface Roughness of the Printed Products.” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7 no. 2, pp. 147-157, 2019.