Endemik Alcea calvertii (Boiss) Boiss. Çiçeklerinin In vitro Antiradikal, Antimikrobiyal ve Antiproliferatif Aktiviteleri ve Fitokimyasal Kompozisyonu

Alcea calvertii (Boiss) Boiss. Malvaceae familyasında yer alan çok yıllık otsu endemik bir bitkidir. Alcea genusuna ait bitkiler bahçelerde süs bitkileri olarak yetiştirilirler. Sunulan çalışmada, Alcea calvertii çiçeklerinin su, etanol, metanol ve aseton ekstraktlarının antiproliferatif, antimikrobiyal, antiradikal aktiviteleri ve fitokimyasal kompozisyonları incelendi. A. calvertii çiçeklerinin su, etanol, metanol ve aseton ekstraktlarının standart antioksidan trolokstan daha düşük oranda DPPH, ABTS ve OH radikali yok ettiği saptandı. A. calvertii çiçeklerinin vitamin, sterol, flavonoit ve fenolik asitler içerdiği ve yüksek miktarda vanillik asit, gallik asit, kateşin, δ-tokoferol, ergosterol ve vitamin D içerdiği belirlendi. A. calvertii su ekstraktının MCF-7 ve HCT-116 kanser hücrelerine karşı diğer ektstraktlardan daha iyi antiproliferatif aktivite gösterdiği gözlendi. LNCaP hücre serilerine karşı ise A. calvertii metanol ekstraktı daha yüksek antiproliferatif aktivite gösterdi.

In vitro Antiradical, Antimicrobial and Antiproliferative Activities and Phytochemical Compositions of Endemic Alcea calvertii (Boiss) Boiss. Flowers

Alcea calvertii (Boiss) Boiss. is belonged to Malvaceae family, and it is a perennial herbaceous endemic plant. Alcea genus plants are grown as ornamental plants in the gardens. In the present study, the antiproliferative, antimicrobial, antiradical activities and phytochemical compositions of ethanol, water, methanol and acetone extracts of A. calvertii flowers were examined. A. calvertii flowers water, ethanol, methanol and acetone extracts are lower scavenged DPPH, ABTS and OH radicals than standard antioxidant trolox. A. calvertii flowers contain vitamins, sterols, flavonoids and phenolic acids, dominated by vanillic acid, gallic acid, catechin, δ-tocopherol, ergosterol and vitamin D. A. calvertii flowers water extract showed better antiproliferative activities than other extracts against to MCF-7 and HCT-116 cell lines. A. calvertii flowers methanol extract showed higher antiproliferative effect against to LNCaP cell lines.

___

  • [1] N.M. Ammar, E.A. El-Kashoury, L.T. Abou El-Kassem, and R.E. Abd El-Hakeem, “Evaluation of the phenolic content and antioxidant potential of Althaea rosea cultivated in Egypt,” Journal of The Arab Society for Medical Research, vol. 8, pp. 48–52, 2013.
  • [2] P.H. Davis, Flora of Turkey and the East Aegean Islands (vol. 10), Edinburgh, United Kingdom: Edinburgh University Press, 1988.
  • [3] A.O. Sevinç, “Investigation of the Antimicrobial and Cytotoxic Effects of the Extracts Obtained from Alcea heldreichii (Boiss.) Boiss. (Malvaceae)” M.S. thesis (in Turkish), Institute of Science and Technology, Akdeniz University, Antalya, Turkey, 2014.
  • [4] H. Fersahoglu, “Bioactive Properties of Hollyhocks (Alcea rosea) Flowers in Different Colors,” M.S. thesis (in Turkish), Institute of Science and Technology, Yildiz Technical University, İstanbul, Turkey, 2016.
  • [5] M.E. Uzunhisarcikli, and M. Vural, “Yetersiz veri (DD) kategorisinde bulunan iki Alcea L. (Malvaceae) türünün yeni IUCN kategorileri ve taksonomisi,” Biological Diversity and Conservation, vol. 2, pp. 90–95, 2009
  • [6] M. Zakizadeh, S.F. Nabavi, S.M. Nabavi, and M.A. Ebrahimzadeh, “In vitro antioxidant activity of flower, seed and leaves of Alcea hyrcana Grossh,” European Review for Medical and Pharmacological Sciences, vol. 15, pp. 406–412, 2011.
  • [7] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, pp. 1231–1237, 1999.
  • [8] B. Halliwell, J.M.C. Gutteridge, and O. Aruoma, “The deoxyribose method: a simple test tube assay for determination of rate constants for reactions of hydroxyl radicals,” Analytical Biochemistry, vol. 165, pp. 215–219, 1987.
  • [9] W. Brand-Williams, M.E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT-Food Science and Technology, vol. 28, pp. 25–30, 1995.
  • [10] K. Slinkard, and V.L. Singleton, “Total phenol analysis-automation and comparison with manual methods,” American Journal of Enology and Viticulture, vol. 28, pp. 49–55, 1977.
  • [11] D.O. Kim, O.K. Chun, Y.J. Kim, H.Y. Moon, and C.Y. Lee, “Quantification of polyphenolics and their antioxidant capacity in fresh plums,” Journal of Agricultural and Food Chemistry, vol. 51, pp. 6509–6515, 2003.
  • [12] O.U. Amaeze, G.A. Ayoola, M.O. Sofidiya, A.A. Adepoju-Bello, A.O. Adegoke, and H.A.B. Coker, “Evaluation of antioxidant activity of Tetracarpidium conophorum (Mull. Arg) Hutch & Dalziel leaves,” Oxidative Medicine and Cellular Longevity, Article ID 976701, 2011.
  • [13] Y.G. Zu, C.Y. Li, Y.J. Fu, and C.J. Zhao, “Simultaneous determination of catechin, rutin, quercetin, kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaf by RP-HPLC with DAD,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, pp. 714–719, 2006.
  • [14] W.W. Christie, Gas chromatography and lipids, Glasgow, Scotland: The Oil Press, 1992.
  • [15] J. López-Cervantes, D.I. Sánchez-Machado, and N.J. Ríos-Vázquez, “High performance liquid chromatography method for the simultaneous quantification of retinol, α-tocopherol, and cholesterol in shrimp waste hydrolysate,” Journal of Chromatography A, vol. 1105, pp. 135–139, 2006.
  • [16] D.I. Sanchez-Machado, J. Lopez-Hernandez, and P. Paseiro-Losado, “High performance liquid chromatographic determination of alpha-tocopherol in macroalgae,” Journal of Chromatography A, vol. 976, pp. 277–284, 2002.
  • [17] C.M. Collins, and P.M. Lyne, Microbiological Methods, Buttermorths-Heinemann, London, England, 1989.
  • [18] T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, pp. 55–63, 1983.
  • [19] F. Denizot, and R. Lang, “Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability,” Journal of Immunological Methods, vol. 89, pp. 271–277, 1986.
  • [20] C. Anlas, O. Ustuner, F.U. Alkan, T. Bakirel, M.N. Aydogan, and S.B. Erel, “A comparative study on the antioxidant activities and phenolic contents of different extracts of Achillea nobilis subsp. sipylea and Alcea apterocarpa (Fenzl) Boiss, endemic plants in Turkey,” Fresenius Environmental Bulletin, vol. 26, pp. 1423–1430, 2017.
  • [21] A. Ertas, M. Boga, I. Gazioglu, Y. Yesil, N. Hasimi, C. Ozaslan, H. Yilmaz, and M. Kaplan, “Fatty acid, essential oil and phenolic compositions of Alcea pallida and Alcea apterocarpa with antioxidant, anticholiesterase and antimicrobial activities,” Chiang Mai Journal of Science, vol. 43, pp. 89–99, 2016.
  • [22] M. Benli, K. Gunay, U. Bingol, F. Guven, and N. Yigit, “Antimicrobial activity of some endemic plants species from Turkey,” African Journal of Biotechnology, vol. 6, pp. 1774–1778, 2007.
  • [23] S.M. Seyyednejad, H. Koochak, E. Darabpour, and H. Motamedi, “A survey on Hibiscus rosa-sinensis, Alcea rosea L. and Malva neglecta Wallr. as antibacterial agents,” Asian Pacific Journal of Tropical Medicine, vol. 3, pp. 351–355, 2010.
  • [24] T. Mert, T. Fafal, B. Kivcak, and H.T. Ozturk, “Antimicrobial and cytotoxic activities of extracts obtained from flowers of Alcea rosea L.,” Hacettepe University Journal of the Faculty of Pharmacy, vol. 30, pp. 17–24, 2010.
  • [25] N.A. Abdel-Salam, N.M. Ghazy, S.M. Sallam, M.M. Radwan, A.S. Wanas, M.A. El Sohly, M.A. El-Demellawy, N.M. Abdel-Rahman, S. Piacente, and M.L. Shenouda, “Flavonoids of Alcea rosea L. and their immune stimulant, antioxidant and cytotoxic activities on hepatocellular carcinoma HepG-2 cell line,” Natural Product Research, vol. 32, pp. 702–706, 2018.
  • [26] A.S. Yaglioglu, F. Eser, S. Tekin, and A. Onal, “Antiproliferative activities of several plant extracts from Turkey on rat brain tumor and human cervix carcinoma cell lines,” Frontiers in Life Science, vol. 9, pp. 69–74, 2016.