Doğal Gaz Yakıtı Kullanan Dizel Motorlu Endüstriyel Kojenerasyon Soğutma Sisteminin Eksergoekonomik Analizi

Bu çalışmada doğal gaz beslemeli bir dizel kojenrasyon sisteminin ekserji ve exergoeconomic analiz sunulmaktadır. Bu kojenerasyon sistemi uygulaması Afyonkarahisar'da 1000 m2 kapalı alana sahip bir spor kompleksi için planlanmaktadır. Yüzme havuzu ve buz pisti içeren bu spor kompleksinin kojenerasyon sisteminde yakıt olarak doğal gaz kullanılmaktadır. Kojenerasyon sistemine enerji saylamak için doğal gazlı dizel motoru kullanılmıştır. Sistemde soğutma çevrimi için gerekli elektrik doğalgaz motorundan üretilmektedir. Aynı zamanda egzoz gazları yüzme havuzu su ısıtması için proses ısı üretiminde kullanılmaktadır. Son olarak, çevrimlerden atılan atık ısılar termoelektrik devreye gönderilerek elektrik üretilmektedir. Kojenerasyon sistemi bilgisayar ortamında EES programı ile termodinamik olarak modellenmiştir ve daha sonra Aspen Plus programı kullanılarak ekonomik analizi yapılmıştır. Kojenerasyon sistemi detaylı bir şekilde tanıtılmış ve özgül ekserji maliyetlendirme (SPECO) yöntemi temelinde, sistem bileşenlerinin maliyet akışlarını ifade eden ilişkiler geliştirilmiştir. Elde edilen sonuçlar termodinamik ve eksergoekonomik performans parametreleri kullanılarak karşılaştırılmıştır. Kojenerasyon sisteminin ekserji verimi %28.74 olarak bulunmuştur, bu da sisteme doğalgazla giren ekserjinin %71.26’sının yıkıma uğradığını göstermektedir. Kojenerasyon sisteminin ekonomik analizi sonucunda yatırım maliyeti 62,000 $ olarak hesaplanmıştır. Doğalgaz motorlu kojenerasyon sisteminde üretilen elektriğin ekserjiye bağlı maliyet oranı ve birim ekserji maliyeti sırasıyla, 0.75 $/h ve 10.93 $/GJ (0.039 $/kWh) olarak hesaplanmıştır. Buz pistinin soğutulması ve spor kompleksi içindeki yüzme havuzunun ısıtılması için kojenerasyon sisteminde üretilen enerjinin maliyeti, sırasıyla 6.152 $/GJ (0.022 $/kWh) ve 4.221 $/GJ (0.0152 $/kWh) olarak hesaplanmıştır.

Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine

This study presents the exergy and exergoeconomic analysis of a natural gas-powered diesel cogeneration system. The cogeneration system is designed for a sports complex with 1000 m2 closed area in Afyonkarahisar city. Natural gas is used as the fuel in the cogeneration system of the sports complex, which includes a swimming pool and ice rink. The natural gas diesel engine is used as the primary energy source for the cogeneration system. In the system, the electricity required for the cooling cycle is produced from the natural gas diesel engine. At the same time, the engine exhaust gases are used in the process of heat generation for swimming pool water heating. Finally, the waste heat discharged from the system is used to produce electricity in the thermoelectric power unit. The cogeneration system was modeled thermodynamically by the EES program on a computer and then economically analyzed by using the Aspen Plus program.  The operation of the cogeneration system is described in detail, and a methodology based on exergoeconomic relations and SPECO method is provided to allocate cost flows through subcomponents of the system. The results were compared by using thermodynamic and exergoeconomic performance parameters.  The exergetic efficiency of the cogeneration system is found to be 28.74%, which indicates that 71.26% of the total exergy input to the system, mainly by natural gas, is destroyed. As a result of the economic analysis of the cogeneration system, the investment cost was calculated as 62,000 $. The exergetic cost rate and the specific unit exergetic cost of the power produced in the cogeneration system are calculated to be 0.75 $/h and 10.93 $/GJ (0.039 $/kWh), respectively. The specific unit exergetic cost of the energy produced in the cogeneration system for cooling the ice rink and heating the swimming pool in the sports complex are calculated to be 6.152 $/GJ (0.022 $/kWh) and 4.221 $/GJ (0.0152 $ /kWh), respectively.

___

  • [1] O. Al-Oquili, R. Kouhy, "Future environmental regulation issues to promote energy efficiency," Journal of Energy Engineering, vol. 132 no. 2, pp. 67-73, 2006.
  • [2] A. Abusoglu, and M. Kanoglu, "First and second law analysis of diesel engine powered cogeneration systems," Energy Conversion and Management, vol. 49, no. 8, pp. 2026-2031, 2008.
  • [3] G. Tsatsaronis, and J. Pisa, “Exergoeconomic evaluation and optimization of energy systems—application to the CGAM problem,” Energy, vol. 19, no. 3, pp. 287-321, 1994.
  • [4] A. Valero et al., “Application of the exergetic cost theory to the CGAM problem,” Energy, vol. 19, no. 3, pp. 365–381, 1994.
  • [5] M.E. Kuyumcu, H. Tutumlu, and R. Yumrutaş, “Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank,” Energy Conversion and Management, no. 121, pp. 349-357, 2016.
  • [6] F. Yüksel, and M. Goza, “Kojenerasyon sistemleri ve uygulamalı ekonomik analizi: hastane örneği,” Engineer and the Machinery Magazine, vol. 10, no. 5, pp. 651-659, 2014.
  • [7] A. Abusoglu, S. Demir, and M. Kanoglu, “Thermoeconomic analysis of a biogas engine powered cogeneration system,” Journal of Thermal Science and Technology, vol. 33, no. 2, pp. 9-21, 2013.
  • [8] A. Abusoglu, and M. Kanoglu, “Emission Characteristics Analysis of Diesel Engine Powered Cogeneration,” Journal of Thermal Science and Technology, vol. 29, no. 1, pp. 45-53, 2009.
  • [9] A.E. Teksan, G. Koçar, A.Eryaşar, E. Aytav, (2019, August 10). Hastanelerde Kojenerasyon ve Trijenerasyon Uygulamalarının Sağladığı Faydanın Vaka Analizi Üzerinden İncelenmesi [Online] Access: www.emo.org.tr/ekler/661b2c3bc72f4b5_ek.pdf.
  • [10] C.O. Colpan, “Exergy analysis of combined cycle cogeneration systems,” PhD Thesis, Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey, 2005.
  • [11] C. Yilmaz, “Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings,” Geothermics, no. 70, pp. 239-248, 2017.
  • [12] O. Boydak et al., “Thermodynamic investigation of Organic Rankine Cycle (ORC) energy recovery system and recent studies,” Thermal Science, vol. 22, no. 6, pp. 2679-2690, 2018.
  • [13] F. Ünal, G. Temir, H. Köten, “Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season,” Journal of Mechanical Science and Technology, vol. 32, no. 8, pp. 3929-3942, 2018.
  • [14] Y.A. Cengel, and M.A. Boles, “Thermodynamics: An Engineering Approach, 9th Ed. New York, USA, McGraw-Hill,” 2018.
  • [15] A. Abusoglu, M. Kanoglu, “Exergoeconomic analysis and optimization of combined heat and power production: A review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2295-2308, 2009.
  • [16] A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization, New York, USA: John Wiley & Sons, 1996.
  • [17] F-Chart Software. “EES, engineering equation solver. In: F-Chart Software 2015”. www.fchart.com/ees/ees.shtml.
  • [18] Aspen PlusV8.4. “Engineering Economic Analysis Library 2015”. https://www.aspentech.com/en/products/engineering/aspen-plus.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü