Kolin Tespiti İçin Moleküler Baskılama Tabanlı Biyosensör Geliştirilmesi

Biyolojik sensörün kısaltması olarak kullanılan biyosensörler, maddelerin sıvı ya da gaz ortamda nicel veya nitel tayinini sahip olduğu biyolojik tanıma bölgeleri sayesinde yapabilen ve elde ettiği verileri tespit edilebilir sinyallere çeviren sistemlerdir. Biyosensörler, uygun tanıma bölgeleri aracılığıyla fiziksel değişiklikleri (yoğunluk, kütle, derişim vb.) tespit edebilmekte ve bunları elektriksel veya optik büyüklüklerle (akım, gerilim, empedans vb.) ilişkilendirmektedir. Bu çalışmada, E-1M, E-3M ve E-5M olmak üzere 3 farklı derişimde moleküler baskılanmış, farklı sayıda kolin tanıma bölgelerine sahip, kalem grafit elektrotlar (PGE), elektrokimyasal biyosensörler olarak kullanılmıştır. Elektrot yüzeyindeki kolin reseptörü konsantrasyonundaki artışın, PGE yüzeyine bağlı kolindeki artışla ilişkili olması ve dolayısıyla elektriksel değişikliklere yol açması beklenmektedir. Çalışma, üç elektrotlu hücrede, referans elektrot olarak Ag/AgCl,  karşı elektrot olarak platin tel ve çalışma elektrotu olarak PGE kullanılarak gerçekleştirilmiştir. Elektrotların açık hücre potansiyeli, dönüşümsel voltametri ve elektrokimyasal empedans ölçümleri, 5mM K3[FeCN6]-3/-4 redoks çifti içeren 10 mM fosfat tampon çözeltisi (PBS) içerisinde alınmıştır. Çözelti içerisindeki kolinin, kolin baskılanmış PGE'ler üzerindeki tamamlayıcı tanıma alanlarına bağlanmasıyla beklendiği gibi PGE'lerde akım, voltaj ve empedans değişimleri gözlenmiştir. Baskılanan molekül konsantrasyonunun artışıyla bağıntılı olarak tespit aralığında da bir artış gözlenmiştir. Sonuç olarak, E-1M kolin baskılanan PGE, 7.2 nM-72 pM tespit aralığındaki kolin konsantrasyonunda en yüksek farklılaşmayı göstermiştir.

Molecularly Imprinted Polymer Based Biosensor for Choline

Biosensors are systems that can perform a quantitative and/or qualitative analysis of substances in a liquid or gas environment through their biological recognition sites and transform the acquired data into detectable signals. Biosensors are able to detect physical changes (i.e. as density, mass concentration, etc.) by means of recognition sites and correlate them with electrical or optical quantities (i.e. current, voltage and impedance). In this study, three molecularly imprinted pencil graphite electrodes (PGE) with differing numbers of choline recognition sites, at E-1 M, E-3 M and E-5 M concentration, were used as electrochemical biosensors. An increase in choline receptor concentration on the electrode surface was expected to correlate with an increase in PGE surface bound choline and thus lead to electrical changes. The study was conducted in a three-electrode cell with Ag/AgCl as the reference electrode, platinum wire as the counter electrode and PGE as the working electrode. Cyclic voltammetry and electrochemical impedance measurements were conducted in 10 mM phosphate buffer solution (PBS) containing 5mM K3[FeCN6]-3/-4 redox pair. As expected, as increasing amount of choline was bound to the complementary recognition sites on choline imprinted PGEs, a correlating change in current, voltage and impedance on PGEs was observed. The dynamic detection range for choline expanded as the choline concentration imprinted on the PGE electrode increased. Using the E-1 M PGE electrode, 72 pM limit of detection, up to 7.2 nM limit of linearity was attained.

___

  • [1] N. Bhalla, P. Jolly, N. Formisano & P. Estrela, “Introduction to Biosensors,” Essays in Biochemistry, vol. 60, no. 1, pp. 1-8, 2016.
  • [2] C. I. Justino, A. C. Freitas, R. Pereira, A. C. Duarte, & T. A. R. Santos, ‘’Recent developments in recognition elements for chemical sensors and biosensors,’’ TrAC Trends in Analytical Chemistry, no. 68, pp. 2-17, 2015.
  • [3] N. Verma, & A. Bhardwaj, ‘’Biosensor technology for pesticides—a review,’’ Applied Biochemistry And Biotechnology, vol. 175, no. 6, pp. 3093-3119, 2015.
  • [4] R. Gui, H. Jin, H. Guo, & Z. Wang, ‘’Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors,’’ Biosensors and Bioelectronics, no. 100, pp. 56-70.,2018.
  • [5] R. Li, Y. Feng, G. Pan, & L. Liu, ‘’Advances in molecularly imprinting technology for bioanalytical applications,’’ Sensors, vol. 19, no. 1, p. 177, 2019.
  • [6] N. Fu, X. Liu, L. Li, B. Tang, & K. H. Row, ‘’Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer,’’ Journal of Separation Science, vol. 40, no. 10, pp. 2286-2291, 2017.
  • [7] G. Ertürk, H. Özen, M. A. Tümer, B. Mattiasson & A. Denizli, “Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples,” Sensors and Actuators B: Chemical, vol. 224, pp. 823-832, 2016.
  • [8] J. M. Moon, N. Thapliyal, K. K. Hussain, R. N. Goyal, & Y. B. Shim, ‘’Conducting polymer-based electrochemical biosensors for neurotransmitters: A review,’’ Biosensors and Bioelectronics, no. 102, pp. 540-552, 2018.
  • [9] S. Nishitani, & T. Sakata, ‘’Potentiometric adsorption isotherm analysis of a molecularly imprinted polymer interface for small-biomolecule recognition,’’ ACS omega, vol. 3, no. 5, pp. 5382-5389, 2018.
  • [10] M. Andaç, G. Baydemir, & A. Denizli, (2018). Molecularly imprinted polymers as a tool for biomolecule separation. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology (pp. 511-545). William Andrew Publishing.
  • [11] M. L. Yola, & N. Atar, ‘’A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug,’’ Current Analytical Chemistry, vol. 13, no. 1, pp. 13-17, 2017.
  • [12] S. H. Zeisel, K. A. Da Costa, P. D. Franklin, E. A. Alexander, J. T. Lamont, N. F. Sheard, & A.L. Beiser, “Choline, an essential nutrient for humans,” The FASEB Journal, vol.5, no.7, pp. 2093-2098, 1991.
  • [13] J. C. M. Hamlin, Pauly, S. Melnyk, O. Pavliv, W. Starrett, T. A. Crook & S. J. James, Autism Research and Treatment, 2013.
  • [14] J. L. Sherriff, T. A. C. O'Sullivan, Properzi, J. L. Oddo & L.A. Adams, “One Carbon Metabolism and Hepatocellular Carcinoma,” Advances in Nutrition, vol. 7, no.1, pp. 5-13, 2016.
  • [15] Y. Tan, D. Jia, Z. Lin, B. Guo, B. He, C. Lu, C. Xiao, Z. Liu, N. Zhao, Z. Bian, W. Zhang, X. Liu, A. Lu & G. Zhang, “Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities,” International Journal of Molecular Sciences, vol. 17, no. 7, pp. 1148, 2016.
  • [16] A. Mastrokolias, R. Pool, E. Mina, K. M. Hettne, E. van Duijn, R. C. van der Mast, G. van Ommen, P. A. Hoen, C. Prehn, J. Adamski & W. van Roon-Mom, “Integration of Targeted Metabolomics and Transcriptomics Identifies Deregulation of Phosphatidylcholine Metabolism in Huntington’s Disease Peripheral Blood Samples,” Metabolomics, vol. 12, no.8, pp. 137,2016.
  • [17] N. Nikzad, & Z. Karami, “Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling,”International Journal of Biological Macromolecules, vol. 115, pp. 1241-1248, 2018.
  • [18] E. Barsoukov, J. R. Macdonald, Fundamentals of Elecktrochemistry, 2nd Ed., New Jersey, USA: John Wiley& Sons, Hoboken, 2005.
  • [19] G. Ertürk, M. Hedström, M. A. Tümer & A. Denizli, “Real-Time Prostate-Specific Antigen Detection with Prostate-Specific Antigen Imprinted Capacitive Biosensors,” Analytica Chimica Acta, vol. 891, pp. 120-129, 2015.
  • [20] B. Özcan, B. Demirbakan, G. Yeşiller & M. K. Sezgintürk, “Introducing a New Method for Evaluation of The Interaction Between an Antigen and an Antibody: Single Frequency Impedance Analysis for Biosensing Systems,” Talanta vol.125, 7-13, 2014.
  • [21] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas & J. J. M. Orfao, “Modification o the Surface Chemistry of Activated Carbons,” Carbon, vol. 37, no. 9, pp. 1379-1389, 1999.
  • [22] I. S. Park & N. Kim, “Thiolated Salmonella Antibody Immobilization onto the Gold Surface of Piezoelectric Quartz Crystal,” Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, 1998.
  • [23] I. Markovich & D. J. Mandler, “Effect of an Alkylsilane Monolayer on an Indium-Tin Oxide Surface on the Electrochemistry of Hexacyanoferrate,” Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, 2000.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Düzce İli Kalıcı Konutlar Bölgesindeki Spor Alanlarının Yeterliliğinin İrdelenmesi

Zeki DEMİR, Tayfun ÇEBİ

Güneş Enerji Sistemi Tasarımı: Kanatlı Hayvan Çiftliği Örneği

Mehmet Onur Karaagac, Hasan OGUL, Selahattin Bardak

Isı ve Farklı Dozlarda Gama Işınları ile Polimerize Edilen Polietilen Fiberle Güçlendirilmiş Akrilik Rezinlerdeki Artık Monomer Miktarının HPLC ile Belirlenmesi

Ümit ERGUN, Hakan ÜNSAL, Ece ERGUN, Betül KALIPÇILAR

Myo-Elektriksel Sinyaller İle İnsansız Kara Aracının Uzaktan Kontrolü

Ahmet B. TATAR, Beyda TAŞAR, Özgür NAZLI, Osman KALKAN

Petrol ve Jeotermal Sektörü Depolama ve Maden Sondaj Borularının Üretimi, Geliştirilmesi, Tasarımı ve Isıl İşlemi

İsmail TOPCU, Arda DEVRIM, Batuhan UNAL, Bilge VANLI

Orman Ürünleri Sanayi Çalışanlarının İş Sağlığı Ve Güvenliğine Kaderci Bakış Açılarının Tespit Edilmesine Yönelik Bir Alan Araştırması

Aytaç AYDIN, Gizem CEYLAN

Termokimyasal Yöntemle Bor ve Titanyum kaplı AISI D2 Kesici Takımlarının Kaplama Özelliklerinin ve Talaşlı İşlem Kabiliyetinin İncelenmesi

Şenol ERTÜRK, Fehmi ERZİNCANLI

DP600 Çeliğine Uygulanan Kesme ve Hassas Kesme İşleminin Sonlu Elemanlar Yöntemi Kullanılarak İncelenmesi

Fatih HELİMERGİN, Nuri ŞEN

Kuzey Kıbrıs'ın Derin Denizlerinde Kadife Karınlı Fener Köpekbalığının Etmopterus spinax (Linnaeus, 1758) Yeni Kaydı

Deniz AYAS, Hasan Deniz AKBORA, Nuray ÇİFTÇİ

Biyoaktif Yeni Benzimidazol Aren Rutenyum Organometalik Bileşiğinin Sentezi ve Karakterizasyonu

Ersin ORHAN, Enes Hakkı ULUÇAY