YAĞIŞIN MEKÂNSAL OLARAK MODELLENMESİNDE KRIGING WITH EXTERNAL DRIFT YÖNTEMİNİN DEĞERLENDİRİLMESİ: EGE BÖLGESİ

Ege Bölgesi’nde görülen coğrafi oluşumlar ve yapılar, Türkiye’nin diğer kıyı bölgerinden farklılık göstermektedir. Özellikle bu bölgedeki yükseklik ve bakı, farklı karekteristiklere sahiptir. Bu nedenle, yağış durumu etkilenmektedir ve düzlük alanlarda görülen yıllık yağış miktarlarında bir istikrar gözlenmemektedir. Bu çalışmada, Ege Bölgesi’nde yağış haritası tahmini için Kriging with External Drift yöntemi kullanılmıştır. Çalışmada 36 istasyonda 1976–2010 yıllarında ölçülmüş aylık ortalama yağış değerlerinden elde edilen yıllık toplam yağış verisi kullanılmıştır. Yağış tahmininde yardımcı değişken olarak yükseklik verisinden yararlanılmıştır. Kriging with External Drift yağış tahmin haritasında orografik uzanımlar ile uyumlu bir dağılım dikkat çekmektedir. Sonuçlar, yüksekliğin yardımcı değişken olarak kullanıldığı Kriging with External Drift analizinin seyrek gözlemlerin olduğu yerlerin yağış haritalarının oluşturulmasına yardımcı bir yöntem olduğunu göstermiştir

EVALUATION OF KRIGING WITH EXTERNAL DRIFT METHOD IN SPATIAL MODELLING OF PRECIPITATION: A CASE OF AEGEAN REGION, TURKEY

The structures and geographical formations observed in the Aegean region of Turkey differ from the other coastal regions of the country. Especially, elevation and aspect have different characteristics in this region. Thus, the precipitation conditions are influenced and the annual precipitation amounts observed in the plains are not consistent. In this study, Kriging with External Drift was applied to obtain a prediction map of precipitation in the Aegean region. Annual mean total precipitation data obtained from 36 stations (1976–2010) were used. Elevation was used as a secondary variable in Kriging with External Drift calculations. The R2 of 0.35 shows that at least one quarter of the precipitation behaviour can be explained by the model. A distribution that complies with the orographic extension draws attention in the Kriging with External Drift precipitation estimation map. The results show that Kriging with External Drift and incorporation of elevation as a secondary variable could be used to supplement sparse observations in the mapping of precipitation

___

  • Yin, Z.Y., Zhang, X., Liu, X., Colella, M., Chen, X. (2008). “An Assessment of the Biases of Satellite Rainfall Estimates Over the Tibetan Plateau and Correction Methods Based on Topographic Analysis”, Journal of Hydrometeorology, Vol. 9, Pp. 301–417
  • Wotling, G., Bouvier, Ch., Danloux, J., Fritsch, M.J. (2000). “Regionalization of Extreme Precipitation Distribution Using the Principal Components of the Topographical Environment”, Journal of Hydrology, Vol. 233, No. 1–4, Pp. 86–101.
  • Wilmott, C.J. (1982). “Some Comments on the Evaluation of Model Performance”, Bulletion of the American Meteorological Society, Vol. 63, Pp. 1309–1313.
  • Tobin, C., Nicotina, L., Parlange, M.B., Berne, A., Rinaldo, A. (2011). “Improved Interpolation of Meteorological Forcings for Hydrologic Applications in a Swiss Alpine Region”, Journal of Hydrology, Vol. 401, Pp. 77–89.
  • Silva, W.M., Simões, S.J. (2014). Spatial Intra-annual Variability of Precipitation Based on Geostatistics: A Case Study for the Paraiba Do Sul Basin, Southeastern Brazil. International Journal of Geosciences, Vol. 5, Pp. 408–417.
  • Qing, Y., Zhu-Guo, M., Liang, C. (2011). “A Preliminary Analysis of the Relationship Between Precipitation Variation Trends and Altitude in China”, Atmospheric and Oceanic Science Letters, Vol. 4, No. 1, Pp. 41–46
  • Phillips, D.L., Dolph, J., Marks, D. (1992). “A Comparison of Geostatistical Procedures for Spatial Analysis of Precipitation in Mountainous Terrain”, Agricultural and Forest Meteorology, Vol. 58, No. 1–2, 119–141.
  • Pebesma, E.J. (2004). “Multivariable Geostatistics in S: The Gstat Package”, Computer&Geosciences, Vol. 30, Pp. 683–691.
  • Pebesma, E.J., Wesseling, C.G. (1998). Gstat, A Program for Geostatistical Modelling, Prediction and Simulation. Computers & Geosciences, Vol. 24, No. 1, Pp. 17–31.
  • Pardo-Igúzquiza, E. (1998). “Comparison of Geostatistical Methods for Estimating the Areal Average Climatological Rainfall Mean Using Data of Precipitation and Topography”, International Journal of Climatology, Vol. 18, Pp. 1031–1047.
  • Moral, F.J. (2010). “Comparison of Different Geostatistical Approaches to Map Climate Variables: Application to Precipitation”, International Journal of Climatology, Vol. 30, Pp. 620–631.
  • Mair, A., Fares, A. (2011). “Comparison of Rainfall Interpolation Methods in a Mountainous Region”, Journal of Hydrologic Engineering, Pp. 371–383.
  • Lloyd, C.D. (2010). “Nonstationary Models for Exploring and Mapping Monthly Precipitation in the United Kingdom”, International Journal of Climatology, Vol. 30, Pp. 390–405.
  • Lloyd, C.D. (2005). “Assessing the Effect of Integrating Elevation Data into the Estimation of Monthly Precipitation in Great Britain”, Journal of Hydrology, Vol. 308, Pp. 128–150.
  • Kumari, M., Basistha, A., Bakimchandra, O., Singh, C.K. (2016) Comparison of Spatial Interpolation Methods for Mapping Rainfall in Indian Himalayas of Uttarakhand Region. In: Raju N. (eds) Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment. Springer, Cham, Switzerland.
  • Kyriakidis, P.C., Kim, J., Miller, N.L. (2001). “Geostatistical Mapping of Precipitation from Rain Gauge Data Using Atmospheric and Terrain Characteristics”, Journal of Applied Meteorology, Vol. 40, Pp. 855–1877.
  • Koçman, A. (1993). Turkey Climate. Aegean University Faculty of Arts Geography Branch, İzmir.
  • Kieffer Weisse, A., Bois, P.H. (2002). “A Comparison of Methods for Mapping Statistical Characteristics of Heavy Rainfall in the French Alps: The Use of Dairly Information”, Hydrological Sciences, Vol. 47, No. 5, Pp. 739–752.
  • Isaaks, E., Srivastava, R. (1989). An Introduction to Applied Geostatistics. Oxford University Press, New York.
  • Hutchinson, M.F. (1998). Interpolation of Rainfall Data with Thin Plate Smoothing Splinespart II: Analysis of Topographic Dependence. Journal of Geographic Information and Decision Analysis, Vol. 2, No. 2, Pp. 152–167.
  • Hohn, M.E. (1998). Geostatistics and Petroleum Geology. Kluwer Academic Publishers, Dordrecht.
  • Hofierka, J., Parajka, J., Mitasova, H., Mitasi, L. (2002). “Multivariate Interpolation of Precipitation Using Regularized Spline with Tension”, Transactions in GIS, Vol. 6, No. 2, Pp. 135–150
  • Carrera-Hernández, J.J., Gaskin, S.J. (2007). “Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico”, Journal of Hydrology, Vol. 336, Pp. 231-249 Hevesi, J.A., Flint, A.L., Istok, J.D. (1992). “Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatsitics. Part I: Structural Analysis”, Journal of Applied Meteorology and Climatology, Vol. 31, Pp. 661–676.
  • Hession, S.L., Moore, N. (2011). “A spatial Regression Analysis of the Influence of Topography on Monthly Rainfall in East Africa”, International Journal of Climatology, Vol. 31, Pp. 1440–1456.
  • Hengl, T. (2009). “A Practical Guide to Geostatistical Mapping”, University of Amsterdam, Amsterdam, Netherlands
  • Goovaerts, P. (2000). “Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall”, Journal of Hydrology, Vol. 228, Pp. 113–129.
  • Goovaerts, P., (1997). Geostatistics for Natural Resources Evaluation. New York: Oxford University Press.
  • Diodato, N. (2005). “The Influence of Topographic Co-variables on the Spatial Variability of Precipitation Over Small Regions of Complex Terrain”, International Journal of Climatology, Vol. 25, No. 3, Pp. 351–363.
  • Deutsch, C., Journel, A. (1998). GSLIB: Geostatistical Software Library and User’s Guide. 2. Edition, New York: Oxford University Press.
  • Darkot, B., Tuncel, M. (1988). Geography of Aegean Region. Istanbul University Oublishing/Institute of Geography Publishing, 2. Edition, İstanbul.
  • Daly, C., Gibson, W.P., Taylor, G.H., Johnson, G.L., Pasteris, P. (2002). “A knowledge-Based Approach to the Statistical Mapping of Climate”, Climate Resarch Vol. 22, Pp. 99–113.
  • Boer, E.P.J., Beurs, K.M., Hartkamp, A.D. (2001). “Kriging and Thin Plate Splines for Mapping Climate Variables”, International Journal of Applied Earth Observation and Geoinformation, Vol. 3 No. 2, Pp. 146–154.
  • Buytaert, W., Celleri, R., Willems, P., De Beivre, B., Wyseure, G. (2006). “Spatial and Temporal Rainfall Variability in Mountainous Areas: A case Study from the South Ecuadorian Andes”, Journal of Hydrology, Vol. 329, Pp. 413–421.
  • Bivand, R.S., Pebesma, E., Gómez-Rubio, V. (2008). Applied Spatial Data Analysis with R (use R!). 1. Edition, Springer, London
  • Bailey, T.C., Gatrell, A.C. (1995). Interactive Spatial Data Analysis, Addison Wesley Longman Limited, Harlow, UK.
  • Aydin, O.; Çiçek, İ. (2015). Geostatistical Interpolation of Precipitation in Turkey, Lambert Academic Publishing, Saarbrucken, Germany
  • Aydın, O., Çiçek, İ. (2013). “Ege Bölgesi'nde Yağışın Mekânsal Dağılımı”, Coğrafi Bilimler Dergisi, Vol. 11, No. 2, Pp. 101–120.
  • Apaydin, H., Anli, A.S., Ozturk, F. (2011). “Evaluation of Topographical and Geographical Effects on Some Climate Parameters in the Central Anatolia Region of Turkey”, International Journal of Climatology, Vol.31, Pp. 1264–1279.