Soyada Tuzluluk stresinin çimlenme ve fide gelişimi üzerine fizyolojik tepkilerinin saptanması

Tuzlaşma, kurak ve yarıkurak tarım alanların en yaygın sorunlarından birini oluşturmaktadır. Soya, önemli bir baklagil bitkisidir. Bu çalışmada, üç farklı tuz konsantrasyonunun Kontrol, 25 and 50 mM NaCl , beş soya çeşidinin çimlenme ve fide özelliklerine fizyolojik etkileri araştırılmıştır. Çeşitler, erken gelişme döneminde tuz toleransı yönünden büyük farklılıklar göstermiştir. Çimlenme oranı, klorofil miktarı, yaprak sayısı ve bitki boyu artan tuz konsantrasyonu ile birlikte önemli düşüşler göstermiştir. Japon TSU ve Mısır Giza-111 çeşitleri tuz stresinden diğer çeşitlere göre daha az etkilenmişlerdir. Ayrıca, TSU ve Giza-111 çeşitleri, artan tuz consantrasyonlarında diğer çeşitlere oranla daha yüksek, çimlenme oranı, kurumadde ve oransal su içeriği göstermiştir. Tuz stresi, çeşitlerin tamamında fide dokusunda Na+ artışını teşvik etmiştir. Buna karşın TSU ve Giza111 çeşitleri, tuzlu koşullarda diğer çeşitlere oranla daha düşük Na+ ve daha yüksek K+ ve prolin biriktirmişlerdir. Bu çalışmada, TSU ve Giza-111 çeşitlerinin çimlenme ve ilk fide döneminde diğer çeşitlere oranla tuza daha toleranslı olduğu saptanmıştır

Physiological performance of soybean germination and seedling growth under salinity stress

One of the most widespread agricultural problems in arid and semiarid regions is soil salinity. Soybean is one of the most important fabaceae plants. The objectives of this investigation were concentrated on the influence of three saline concentrations Control, 25 and 50 mM NaCl on some physiological parameters during germination and seedling stage of five soybean cultivars. The results were revealed a large variability within cultivars for salt tolerance at the early growth stages. Germination percentages, chlorophyll content, leaf number and plant height were significantly reduced with increasing salinity concentrations. The Japanese cultivar TSU and Egyptian cultivar Giza-111 was less affected by salinity stress than other cultivars. Also, TSU and Giza -111 maintained a higher germination percent, dry weight and relative water content than other cultivars with increasing of salinity concentrations. Salinity stress induced a significant increase in seedling tissue sodium Na+ in all cultivars. However, TSU and Giza-111 maintained lower Na+ both higher potassium K+ and proline accumulated at the higher saline conditions than other cultivars. In this study, exhibited higher levls of tolerance to salinity compared to the other cultivars during germination and seedling stage

___

M.R. Foolad, J.R. Hyman, G.Y. Lin, Relationships between cold and salt tolerance during seed germination in tomato: analysis of response and correlated response to selection. Plant Breeding 118 (1999) 49-52.

M.R. Foolad, G.Y. Lin, Genetic potential for salt tolerance during germination in lycopersicon species. Hort. Sci. 32 (1997) 296-300.

L. Bernstein, L.E. Francois, R.A. Clark, Interactive effects of salinity and fertility on yields of grains and vegetables. Agron. J. 66 (1974) 412-421.

C. Hampson, and G. Simpson, Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum). I. Germination. Canadian Journal of Botany 68 (1990) 524-528.

Q.Y. Luo, B.J. Yu, Y.L. Liu, Differential sensitivity tochloride and sodium ions in seedlings of Glycine max andG. soja under NaCl stress. J. Plant Physiol., 162(9):1003-1012. [doi:10.1016/j.jplph.2004.11.008], (2005).

R. Farhoudi, F. Sharifzadeh, M. Makkizadehand, M. Kochakpour, The effects of NaCl priming on salt tolerance in canola (Brassicanapus) seedlings grown under saline conditions. Seed Science and Technology 35 (2007) 754- 759.

M. Khajeh-Hosseini, A.A. Powell, I.J. Bingham, The interaction between salinitystress and seed vigour during germination ofsoybean seeds. Seed Science and Technology 31(2003) 715-725.

J. Letly, Relationship salinity and efficient water use. Irrigation science 40 (1993) 75.

M. Rehman, U.A. Soomro, M.Z. Haq, S. Gul, Effects of NaCl salinity on wheat (Triticum aestivum L.) cultivars. World Journal of Agricultural Science 4 (2008) 398-403.

J. Nakagawa, Testes de vigor baseados no desempenho de plântulas. In: F.C. Krzyzanowski, R.D. Vieira, J.B. França- Neto, (Ed.). Vigor de sementes: conceitos e testes. Londrina: ABRATES, 1999. p.2.1-2.21, (1999).

L.S. Bates, R.P. Waldren, I.D. Teare, Rapid determination of free proline for water stress studies. Plant and Soil 39 (1973) 205-207.

A.O. Egeh, O.B. Zamora, Growth and nutrient content of mungbean (Vigna radiata L.), Cowpea (Vigna unguiculata L.) and Soybean (Glycine max L.) under different levels of salinity. Philippine J. of Crop Sci. 17(2) (1992) 75-83.

M. Duong, P.B. Nguyen, M.Q.Vo, H.I. Nguyen, N.V. Duong, C.H. Nguyen, Mungbean varietal development for problem soils in the Mekong Delta of Vietnam. TVIS 3(1988) 4-9.

G.L. Maliwal, K.V. Paliwal, Salt tolerance of some mungbean (Vigna radiata), urdbean (V mungo) and guar (Cyamopsis tetragonobola) varieties at germination and early growth stages. Legume Res. 5(1) (l982) 23-30.

P.K. Raptan, Salinity induced changes in dry matter partitioning and mineral ion production in Vigna spp. An M. S. thesis, Dept of Agronomy. Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur-1703, (2000).

M. Ashraf, The effect of NaCl on water relations, chlorophyll, and protein and proline contents of two cultivars of blackgram (vigna radiata L.). Plant and Soil 119 (1989) 205-210.

M. Jamil, S. Rehman, K.J. Lee, J.M. Kim, H.S. Kim, E.S. Rha, Salinity reduced growth PS II photochemistry and chlorophyll content in radish. Sci. Agric. 64 (2007) 1-10.

A.K. Singh, R.S. Dubey, Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedling induced by NaCl. Photosynthetica 31 (1995) 489- 499.

S.N. Mishra, D.B. Singh, A. Chaudhury, Nitrate and ammonium on Indian mustard seedling growth under saline stress. Indian J. Plant Physiol. 1(2) (1995) 93-97.

Dubey R.S., Effect of salinity on nucleic acid metabolism of germinating rice seeds differing in salt tolerance. Plant Physiol. Biochem. 12 (2003) 9-16.

Siddique S, S. Kumar, Effect of salinisation and desalinisation of growth and development of pea (Pisum sativum L.). Indian J. Plant Physiol. 28 (1985) 151-156.

W. Wang and B. Vinocur, A. Altman, Plants responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, Heidelberg 218 (1) (2003) 1-14.

S. Kumar, P. Bhardwaj, Study on genotypic differences in the early seedling growth of varioius crop plants under saline conditions. I. Moong [Vigna radiata (L.) Wilczek] Indian J. Plant Physiol. 24 (1981) 123-127.

M. Asraf, E. Rasul, Intra-specific variation for the salt tolerance of two cultivars of mungbean [Vigna radiata (L.) Wilczek, Au Mg 588 and Mg 6601]. J. Agron. and Crop Sci. 167 (1987) 186-191.

K.S. Gill, Effect of saline water application on growth and yield at different growth stages in mung [Vigna radiata (L.) Wilczek]. Natio. Symp. Manage. Irrig. Sys. pp. 24-27. CSSRI, Karnal, India, (1988).

B. C. Patil, D. P. Viswanath, S. G. Patil, Effect of salinity on rate of photosynthesis and associated leaf characters in maize. Indian J. Agric.Res. 30(3/4) (1996) 169-172.

M. Hussain, M.A. Malik, M. Farooq, M.B. Khan, M. Akram, M.F. Saleem, Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J. Agronomy & Crop Science 195 (2009) 98–109.

M.M.F. Mansour, K.H.A. Salama, F.Z.M. Ali, A.F.A. Hadid, Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen. Appl. Plant Physiol. 31(1-2) (2005) 29-41.

C. Sudhakar, Reddy P.S., S.Veeranjaneyulu, Effect of salt stress on dry matter production and mineral content during early seedling growth of horse gram (Macrotyloma uniflorum Lam. Verde). Plant Physiol. Biochem. 17 (1990) 88-91.

B.R. Chippa, D. Rana, Na+/K+ ratio asthe basis of salt tolerance in wheat. Australian Journal of Agriculture Reserch 46 (1995) 533-539.

L. Taiz, E. Zeiger, Plant physiology. The Benjamin/ Cummings Publishing Company, Inc. 390 Bridge Parkway, Kedwood City, California 94065,USA. pp.362-364, (1991).

M. M. N. Alla, M. E. Younis, O. A. El-Shihaby, Z. M. El- Bastawisy, Kinetin regulation of growth and secondary metabolism in waterlogging and salinity treated Vigna senensis and Zea mays. Acta Physiol. Plant., Warsaw 24 (1) (2002) 19-27.

J. R. A. Amorim , P. D. Fernandes, H. R. Gheyi, N. C. Azevedo, Efeito da salinidade e modo de aplicação da água de irrigação no crescimento e produção de alho. Pesq. Agropec. Bras., Brasília 37 (2) (2002) 167- 176.

I. S. Campos, M. V. Assunção, Efeito do estresse salino e hídrico na germinação e vigor de plântulas de arroz. Pesq. Agropec. Bras., Brasília 25 (6) (1990) 837-843.

M. Hilal, A. M. Zenoff, G. Ponessa, H. Moreno, E. M. Massa, Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots. Plant Physiol., New York 117 (2) (1998) 695-701.

C.F. Lacerda, J. Cambraia, M.A.O. Cano, H.A.R. Ruiz, Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Braz. J. Plant Physiol., Brasília 13 (3) (2001) 270-284.

C. C. Lin, C. H. Kao, Cell wall peroxidase activity, hydrogen peroxide level NaCl-inhibited root growth of rice seedlings. Plant Soil 230 (2001a) 135-143.

M. Sidari, C. Santonoceto, U. Anastasi, G. Preiti and A. Muscolo, Variations in four genotypes of lentil under NaCl-salinity stress. American Journal of Agricultural and Biological Science 3(1) (2008) 410-416.

S.K. Sharma, S. Kumar, Effect of salinization on growth and distribution of Na+, K+ and Cl- in two genotypes of chickpea. Indian J. Plant Physiol. 33 (1990) 269–274.

S.A. Hye, Salinity tolerance in chickpea. An M.S. thesis. Submitted to Dept of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur-1703, (2000).

D. Chen, D.M Yu-Renpei, D.M. Yu, Studies of relative salt tolerance of crops. Salt tolerance of some main crop species. Acta pedologica science 33 (1996) 121-128.

J. Letly, Relationship salinity and efficient water use. Irrigation science, 40 (1993) 75-84.

Y.M Makki, M.I., Effect of drainage water on seed germination and early seedling growth of five field crop species. Biological waste 21(1987) 133-137.

M. Salim, Effect of salinity and relative humidity on growth and ionic relations of plants. New Physiologist 113(1) (1989) 13-20.

A. Blum,, Salinity resistance. In: Plant breeding for stress environments. pp.163-179. CRC Press (Florida), (1988).

H. Greenway, R. Munns, Mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 31 (1980) 149-190.

G.V.S. Rao, C. Johanson, M.K. Jana and J.V.D.K.K. Rao. Physiological basis of differences in salinity tolerance of pigeonpea and its related wild species. J. Plant. Physiol. 137(1) (1990) 64-71.

M. Maziah, Z. Abdul Rahman, H. Mohd, S.Z. Shamsuddin, S. Subramaniam, Responses of banana plantlets to rhizobacteria inoculation under salt stress condition. Am.- Eurasian J. Sustain. Agric. 3(3) (2009) 290-30.

M.A. Morant, E. Pradier, G. Tremblin, Osmotic adjustment, gas exchange and chlorophyll fluorescence of a hexaploid triticaleand its parental species under salt stress. Plantphysiology 161(1) (2004) 25-33.

G.A. Shi and J.H. Jing, Mitigative effect of external Ca2+ on the inhibition of hypocotyl elongation in mungbean seedling under salt stress. Plant Physiol. Communication 33 (1997) 24-27.

S. Singh, M. Singh, Comparison of some methods of analysis for genotypic differences to salt tolerance in wheat. Indian J. Genet. 60(2) (2000) 153-158.

T.J. Flowers, P.F. Troke, A.R. Yeo, The mechanisms of salt tolerance in halophytes. Ann. Rev. Palnt Physiol. 28 (1977) 89-121.

E. Bandeoglu, F. Eyidoğan, M. Yucel, H.A. Oktem, Antioxidant responses of shoots and roots of lentil to NaCl- salinity stress. Plant Growth Regulation 42 (2004) 69-77.

D.H. Lee, Y.S. Kim, C.B. Lee, The inductive responses of antioxidant enzymes by salt stress in rice (Oryza sativa L.). Journal of Plant Physiology 158 (2001) 737-745.

W.A. Tramontano and D. Jouve, Trigonelline accumulation in salt stressed legumes and the role of other osmoregulators ascell cycle control agents. Photochemistry 44 (1997) 1037– 1040.

M. Ashraf, T. McNilley, Salinity tolerance in Barcia oil seeds. Plant Science 23(2) (2004) 157-172

M.H. Khan, K.L.B. Singha, S.K. Panda, Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl salinity stress. ActaPhysiol. Plant 24 (2002) 145-148.

Gad N., Interactive effect of salinity and cobalt on tomato plants. II. Some physiological parameters as affected by cobalt and salinity. Res. J. Agric. Bio. Sci. 1 (2005) 270-276.