Optical and Structural Properties of MOCVD Grown InxGa1-xAs

InxGa1-xAs tabakaları katkısız InP (100) alttaş üzerine Aixtron 200-4 RF/S yatay Metal Organik Kimyasal Buhar Depolama (MOCVD) sistemi ile büyütülmüştür. Bütün epikatmanlar farklı indiyum konsantrasyonlarında büyütülmüştür. Katmanların kalınlıkları Taramalı Elektron Mikroskobu (SEM) ile ölçülmüştür. İndiyum konsantrasyonları Yüksek Çözünürlüklü X-ışını Kırınım (HRXRD) cihazı ile tayin edildi ve kırılma indisi (n) ve kalınlıkların belirlenmesi için optiksel ölçümler spektroskopik elipsometre ile yapıldı. In-situ yansıma, örneklerin kalınlıklarının belirlenmesi için kullanılmıştır. Son olarak bütün kalınlıklar karşılaştırılmıştır

MOCVD ile Büyütülen InxGa1-xAs Epikatmanların Optik ve Yapısal Özellikleri

InxGa1-xAs layers on undoped InP (100) substrates were grown with Aixtron 200-4 RF/S horizontal Metal Organic Chemical Vapour Deposition (MOCVD) reactor. All the epilayers have been grown with different indium compositions. Thickness of the samples were measured via Scanning Electron Microscopy (SEM). Indium concentrations were defined by High Resolution X-ray Diffraction (HRXRD) and optical measurements were done with spectroscopic ellipsometry in order to obtain refractive index (n) and thickness of the samples. In-situ reflectance is used to measure thickness of samples. Then all of the thicknesses are compared

___

  • [1]. Hellara J., Hassen F., Maaref H., Dumont H., Souliere V., Monteil Y. Alloy broadening effect on optical properties of InGaAs grown by MOCVD with TMAs precursor, Microelectronics Journal 2004; 35: 207-212.
  • [2]. Nahory R.E., Pollack M.A., Johnson Jr W.D., Barns, R.L. Band gap versus composition and demonstration of Vegard law for In1-xGaxAsyPy lattice matched to InP, Appl. Phys. Lett. 1978; 33: 659-661.
  • [3]. Yamaguchi M., Takamoto T., Araki K., Ekins-Daukes N.J. Multi-junction III-V solar cells: current status and future potential, Solar Energy 2005; 79: 78-85.
  • [4]. Lee J.J., Mawst L.J., Botez D. MOCVD growth of asymmetric 980 nm InGaAs/ InGaP broad-waveguide diode lasers for high power applications, Journal of Crystal Growth 2003; 249: 100-105.
  • [5]. Chen Y.W., Hsu W.C., Hsu R.T., Wu Y.H., Chen Y.J. Low dark current. InGaAs(P)/InP p-i-n photodiodes, Jpn. J. Appl. Phys. 2003; 42: 4249-4252.
  • [6]. Yang Y., Sun X.W., Chen B.J., Xu C.X., Chen T.P., Sun C.Q., Tay B.K., Sun Z. Refractive Indices of Textured Indium Tin Oxide and Zinc Oxide Thin Films, Thin Solid Films 2006; 510: 95-101.
  • [7]. Chiu M.H., Lee J.Y., Su D.C. Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry, Applied Optics 1999; 38: 4047-4052.
  • [8]. Dai Z.H., Zhang R.J., Shao J., Chen Y.M., Zheng Y.X., Wu J.D., Chen L.Y. Optical Properties of Zinc-oxide Films Determined Using Spectroscopic. Ellipsometry with Various Dispersion Models, Journal of the Korean Physical Society 2009; 55: 1227- 1232.
  • [9]. Bhattacharya P., Properties of LatticeMatched And Strained Indium Gallium Arsenide, University Of Michigan, USA. 1993.
  • [10]. Grasse C., Tomita Y., Wiecha P., Meyer R., Gründl T., Müller M., Amann M.C. in-situ Characterization of MOCVD grown GaAs and InP-based tunable VSCEL structures, The 25th International Conference on Indium Phosphide and Related Materials 2013; May 19-23.
  • [11]. Takagi T. Refractive index of Ga 1-x In x As prepared by vapor-phase epitaxy, Jpn. J. Appl. Phys 1978; 17: 1813-1817.