Anaplasma Phagocytophilum’un Tayinine Yönelik Elektrokimyasal DNA Sensörü Geliştirilmesi

Bu çalışma, oldukça geniş bir konakçı gurubunda enfeksiyona yol açan bir patojen olan Anaplasma Phagocytophilum dizi seçimli DNA hibridizasyonunun voltametrik yöntemle tayin edildiği tek kullanımlık elektrokimyasal DNA biyosensörü geliştirilmesine yöneliktir. Herhangi bir etiketlemenin yapılmadığı bu elektrokimyasal çalışmanın esasını DNA hibridizasyonu sonrasında Guanin bazının yükseltgenme sinyalinin ölçülmesi ile bir dubleks oluşumunun izlenmesi oluşturur. Söz konusu biyosensör tasarımı inozinmodifiye (guanin içermeyen) probun, kalem grafit elektrota (PGE) immobilize edilmesi ve diferansiyel puls voltametrisi (DPV) ile guanin yükseltgenme sinyalinin ölçülerek, dubleks oluşumu tayinini içerir. Bu çalışmanın ilk aşamasında, Anaplasma phagocytophilum temsil eden prob dizisi, aktive edilmiş kalem grafit elektrot (PGE) yüzeyine yaş adsorbsiyon yöntemi ile immobilize edilmiş ve daha sonra prob ve hedefi arasındaki hibridizasyonun varlığı 1000 mV'da gözlenen guanin yükseltgenme sinyali ile tespit edilmiştir

Development of Electrochemical DNA Sensor for The Determination of Anaplasma Phagocytophilum

This study was intended to enhance the disposable electrochemical DNA biosensor through which Anaplasma phagocytophilum, a pathogen causing infection in a considerably wide host group, sequence selective DNA hybridization was detected with a voltammetry method. Monitoring the formation of a duplex by measuring the oxidation signal of guanine base after DNA hybridization forms the basis of this study in which no labeling was done. The biosensor design contained immobilizing inosine modified (guanine-free) probe to the pencil graphite electrode (PGE) and detecting duplex formation by measuring guanine oxidation signal with differential pulse voltammetry (DPV). optimization study, it was observed that probe concentration was 25 µg/mL, immobilization time was 6 minutes; for the hybridization, target concentration was 40 µg/mL and hybridization time was 10 minutes. Selectivity of biochemical biosensor developed was tested by using mismatch and non complementary target sequences. It was also confirmed that DNA hybridization was carried out with impedimetric measurements by using electrochemical impedance method under the ferri/ferro cyanide redox system. To estimate the detection limit (DL), target sequences whose concentrations varies between 0, 78 µM and 3,90 µM were used, and it was found that the detection limit was 0,244 µM

___

  • [1]. Wang J.,Rivas G., Cai X., Palecek E., Nielsen P., Shiraishi H., Dontha N., Luo D., Parrado C.,Chicharro M., Farias P.A.M., Valera F.S., Grant D.H., Ozsoz M., Flair M.N., DNA electrochemical biosensors for environmental monitoring. A review, Analytica Chimica Acta,1997, 347 (1-2), 1.
  • [2]. Wang J., Towards genoelectronics: Electrochemical biosensing of DNA hybridization, Chem. Eur., J., 1999, 5 (6), 1681.
  • [3]. Wang J.,Rivas G., Luo D., Cai X., Valera F.S., Dontha N., DNA-modified electrode for the detection of aromatic amines, Anal. Chem.,1996, 68, 4365.
  • [4]. Özkan D., Erdem A., Kara P., Kerman K., Gooding J.J., Nielsen P.E., Özsöz M., Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes,Anal. Chim. Acta, 2002, 462 (1), 39.
  • [5]. Fojta M., Havran L., Fulneckova J., Kubicaova T., Adsorptive transfer stripping AC voltammetry DNA complexes with intercalators, Electroanal., 2000, 12, 926.
  • [6]. Wang J., Kawde A.N., Erdem A., Salasar M., Magnetic beads based label free electrochemical detection of DNA hybridisation, Analyst, 2001, 120, 2020.
  • [7]. Meriç B., Kerman K., Özkan D., Kara P., Özsöz M., Indicator-free DNA biosensor based on adenine and guanine signals, Electroanal., 2002, 14(18), 1245.
  • [8]. Lumbey-Woodyear T., Campbell C.N., Freeman E. Freeman Georgiou G. Heller A., Rapid Amperometric verification of PCR amplification of DNA, Anal. Chem.,1999, 71, 535.
  • [9]. Kara P., Kerman K., Özkan D., Meriç B., Erdem A., Özkan Z., Özsöz M., Electrochemical genosensor for the detection of interaction between methylene blue and DNA, Electrochem. Commun., 2002, 4, 705.
  • [10].Arıksoysal D., Karadeniz H., Erdem A., Şengönül A., Sayıner A.A., Özsöz M., Labelfree electrochemical hybridization genosensor for the detection of hepatitis B virus genotype on the development of lamivudine resistance, Anal. Chem., 2005, 77 (15), 4908.
  • [11].Brabec V., Koudelka J., Oxidation of DNA at carbon electrodes the effect of the quality of the DNA sample, J. Electroanal. Chem., 1980, 116, 793.
  • [12].Fojta M., Doffkova R., Palecek E., Determination of traces of RNA in submicrogram amounts of single -or double- stranded DNAs by means of nucleic acid-modified electrodes, Electroanal., 1996, 8(5), 420.
  • [13].Erdem A, Meriç B., Kerman K., Dalbastı T., Özsöz M., Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor, Electroanal., 1999, 11, 1372.
  • [14].Jelen, F., Erdem A., Palecek, E., Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode, Bioelectrochemistry, 2002, 55, 165.
  • [15].Pividori M.I., Merkoçi A., Alegret S., Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods, Biosensors and Bioelectronics, 2000, 15, 291.
  • [16].Wang A.H.J. Interactions between anti tumor drugs and DNA, NucleicAcidsand Molecular Biology, 1987, Vol.1, 52, (Ed; Eckstein, F.,Lilley, D.M.J.,)Springer-Verlag Berlin Heidelberg-Germany.
  • [17].Özkan D., Karadeniz H., Erdem A., Mascini M., Özsöz M., Electrochemical genosensor for Mitomycin C- DNA interaction based on guanine signal, J. Pharmaceutical and Biomedical Analysis, 2004, 35, 905.
  • [18].Dumitrache M.O., Paştiu A.I., Kalmár Z., Mircean V., Sándor A.D., Gherman C.M., Peştean C., Mihalca A.D., Cozma V., Northern white-breasted hedgehogs Erinaceus roumanicus as hosts for ticks infected with Borrelia burgdorferisensu lato and Anaplasma phagocytophilum in Romania, TicksTick-borneDis., 2013, 4 (3) , 214.
  • [19].Woldehiwet Z., The natural history of Anaplasma phagocytophilum, Vet. Parasitology, 2010, 167, 108.
  • [20].Stuen S., Torsteinbo W.O., Bergstrom K., Bardsen K., Superinfection occurs in Anaplasma phagocytophilum infected sheep irrespective of infection phase and protection status, Acta Vet. Scand., 2009, 5, 1.
  • [21].Grøva L., Olesen I., Steinshamn H., Stuen S., Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth, Acta Vet. Scand., 2011, 53, 30.
  • [22].Stuen S., Anaplasma phagocytophilum – the most widespread tick-borne infection in animals in Europe, Vet. Res. Commun., 2007, 31 (1),79.
  • [23].Kathrin H.,Rainer O., Henning F., Stefan O. B., Dieter H., Peter K., Pathogens and symbionts in ticks: prevalence of Anaplasma phagocytophilum (Ehrlichia sp.), Wolbachia sp., Rickettsia sp., and Babesia sp. in Southern Germany, Int. J. Med. Microbiol., 2004, 293(37), 86.
  • [24].Petrovec M, Sixl W, Marth E, Bushati N, Wust G, Domestic animals as indicatiors of Anaplasma species infections in Northern Albania, Annuals of the New York Academy of Sciences, 2003, 990, 112.
  • [25].Rymaszewska A., Divergence within the marker region of the gro ESL operon in Anaplasma phagocytophilum. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 1025.
  • [26].Smrdel K.S., Seret M., Duh D., Knap N., Avsic-Zupanc T. , Anaplasma phagocytophilum in ticks in Slovenia, ParasitesandVectors, 2010, 3, 210.
  • [27].Wang J., Cai X., Rivas G., Shiraishi H. Stripping potentiometric transduction of DNA hybridization processes, Anal. Chim. Acta, 1996, 326, 141.
  • [28].Palecek E., Fojta M., Differantial pulse voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid component, Anal. Chem., 1994, 66, 1566.
  • [29].Meriç B., Kerman K., Özkan D., Kara P., Erensoy S., Akarca U.S., Macsini M., Özsöz M., ). Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue,Talanta, 2002, 56 (5, 939.
  • [30].Özkan D., Erdem A., Kara P., Kerman K., Gooding J.J., Nielsen P. E., Özsöz M., Electrochemical detection of hybridization using peptide nucleic acids and methylen blue on self-assembled alkanethiol monolayer modified gold electrodes, Electrochem. Commun., 2002, 4, 796.
  • [31].Erdem A., Özsöz M., Voltammetry of the anticancer drug mitoxantrone and DNA, Turk. J. Chem, 2001, 25, 469.
  • [32].Erdem A., Sayar F., Karadeniz H., Guven G., Ozsoz M., Piskin E., Development of Streptavidin Carrying Magnetic Nanoparticles and Their Applications in Electrochemical Nucleic Acid Sensor Systems, Electroanal,, 2007, 19, 798.