Lifli Betonarme Kısa Konsolların Kesme Dayanımının Destek Vektör Makineleri ile Tahmini

Prefabrik kısa konsollar, özellikle sanayi yapılarında sıkça tercih edilen yapı elemanlarıdır. Bu çalışmada, lifli betonarme kısa konsolların kesme dayanımı, literatürde ilk defa, destek vektör makineleri (DVM) ile tahmin edilmiştir. Mevcut deneysel veriler kullanılarak DVM modelleri oluşturulmuş ve tahmin performansları analiz edilmiştir. Seçilen modelin tahminleri, deney sonuçları ve literatürde mevcut olan modelin (Fattuhi, 1994) tahminleri ile karşılaştırılmıştır. Model, çelik lifli kısa konsolların yanı sıra cam lifli konsolların taşıma kapasitelerini de tahmin edebilmektedir. Ayrıca model, her bir girdi parametresinin etkisini incelemek amacıyla, parametrik analize tabi tutulmuştur. Sonuçlar, önerilen modelin yüksek tahmin kapasitesine sahip olduğunu göstermektedir.

Predicting the Shear Strength of Fiber Reinforced Concrete Corbels Via Support Vector Machines

Precast corbels are commonly preferred structural members in industrial buildings. In this study, anovel application of support vector machines (SVM) is employed for the prediction of ultimate shear strengthof fiber reinforced corbels, for the first time in literature. SVM models are developed and analyzed using adatabase of available test results in literature. Predictions of the selected model are compared against the testresults and those of available model proposed by Fattuhi (1994). Proposed model has the capability to predictthe shear strength of both steel fiber reinforced concrete (SFRC) and glass fiber reinforced concrete (GFRC)corbels. Additionally, a parametric study with a wide range of variables is carried out to test the effect of eachparameter on the shear strength. The results confirm the high prediction capacity of proposed model.

___

  • Sherrod P.H., DTREG Predictive Modeling Software, Users Manual, 2008.
  • Kumar S., Barai S., Neural Networks Modeling of Shear Strength of SFRC Corbels Without Stirrups, Appl. Soft Comput., 10 (2010) 135-148.
  • Çevik A., Kurtoğlu A.E., Bilgehan M., Gülşan M.E., Albegmprli H.M., Support Vector Machines in Structural Engineering: A Review, J. Civil Eng. and Manag., 21 (2015) 261-281.
  • Okkan U., Serbes Z.A., Rainfall–Runoff Modeling Using Least Squares Support Vector Machines, Environmetrics, 23 (2012) 549-564.
  • Li H.S., Lu Z.Z., Yue, Z.F., Support Vector Regression for Structural Reliability Analysis, Appl. Math. and Mech., 27 (2006) 1295-1303.
  • Cao Y.F., Wu W., Zhang H.L., Pan J.M., Prediction of the Elastic Modulus of Self- Compacting Concrete Based on SVM, Appl. Mech. and Mater., 357 (2013) 1023- 1026.
  • Yang S., Fang C.Q., Yuan Z.J., Study on Mechanical Properties of Corroded Reinforced Concrete Using Support Vector Machines, Appl. Mech. and Mater., 578 (2014) 1556-1561.
  • Zhang W. and Song Z., Prediction of Concrete Corrosion in Sulfuric Acid by SVM-Based Method, 2nd International Conference on Electronic and Mechanical Engineering and Information Technology, 2012.
  • Cherkassky V. and Ma Y., Selection of Meta-Parameters for Support Vector Regression, Artificial Neural Networks - ICANN 2002, (2002) 687-693.
  • Chen N., Lu W., Yang J., Li G., (Eds). Support Vector Machine in Chemistry. World Scientific, 2004.
  • Wang, L., (Ed). Support Vector Machines: Theory and Applications. Berlin: Springer, 2005.
  • Boser B.E., Guyon I.M., Vapnik V.N., A Training Algorithm for Optimal Margin Classifiers, Proceedings of The Fifth Annual Workshop on Computational Learning Theory, (1992) 144-152.
  • Kurtoglu A.E., Gulsan M.E., Abdi H.A., Kamil M.A., Cevik A., Fiber Reinforced Concrete Corbels: Modeling Shear Strength Via Symbolic Regression. Comp. and Concr., 20 (2017) 1-10.
  • Yang J.M., Lee J.H., Yoon, Y.S., Cook W.D., Mitchell D., Influence of Steel Fibers and Headed Bars on The Serviceability of High-Strength Concrete Corbels, J. Struct. Eng., 138 (2011) 123- 129.
  • Muhammad A., Behavior and Strength of High-Strength Fiber Reinforced Concrete Corbels Subjected to Monotonic or Cyclic (Repeated) Loading, PhD thesis, Dept. ofBuilding and Construction Eng., University of Technology, Baghdad, 1998.
  • Campione G., Performance of Steel Fibrous Reinforced Concrete Corbels Subjected to Vertical and Horizontal Loads, J. Struct. Eng., 135 (2009) 519- 529.
  • Campione G., La Mendola L., Mangiavillano M.L., Steel fiber- Reinforced Concrete Corbels: Experimental Behavior and Shear Strength Prediction, ACI Struct. J., 104 (2007) 570-579.
  • Fattuhi N.I and Hughes B.P., Reinforced Steel Fiber Concrete Corbels with Various Shear Span-To-Depth Ratios, ACI Mater. J., 86 (1989) 590-596.
  • Fattuhi N.I. and Hughes B.P., Ductility of Reinforced Concrete Corbels Containing Either Steel Fibers or Stirrups, ACI Struct. J., 86 (1989) 644-651.
  • Fattuhi N.I., Strength of FRC Corbels in Flexure, J. Struct. Eng., 120 (1994) 360- 377.
  • Fattuhi N.I., Column-Load Effect on Reinforced Concrete Corbels, J. Struct. Eng., 116 (1990) 188-197.
  • Fattuhi N.I., SFRC Corbel Tests, ACI Struct. J., 84 (1987) 119-123.
  • Deluce J.R., Cracking Behaviour of Steel Fibre Reinforced Concrete Containing Conventional Steel Reinforcement. MSc Thesis, 2011.
  • Thomas J. and Ramaswamy A., Mechanical Properties of Steel Fiber- Reinforced Concrete, J. Mater. Civ. Eng., 19 (2007) 385-392.
  • Fanella D.A. and Naaman A.E., Stress- Strain Properties of Fiber Reinforced Mortar in Compression, J. Amer. Concr. Inst., 82 (1985) 475-483.
  • American Concrete Institute, State-of-the- Art Report on Fiber Reinforced Concrete. ACI Committee 544, 2002.