Ethyl Methanesulfonate-Induced DNA Damage in Drosophila Melanogaster

Deneylerin sonucunda saf su kontrol grubu, 1 mM EMS, %1 RCsu, %3 RCsu ve %5 RCsu uygulama gruplarının toplam klon frekansları sırasıyla 0.15, 3.55, 2.58, 2.78 ve 2.20 olarak belirlenmiştir. Saf su kontrol grubu ve 1 mM EMS uygulama grupları arasındaki fark istatistiksel olarak önemlidir (P

Genoprotective Effects of Aqueous Extracts of Rosa Canina L. Fruits on Ethyl Methanesulfonate-Induced DNA Damage in Drosophila Melanogaster

Abstract. In this study, the possible genotoxic effects of ethyl methanesulfonate (EMS) which are one of alkylating agent and genoprotective effects of Rosa canina L. fruit water extract (RCwtr) was studied with Drosophila wing somatic mutation and recombination test (SMART). Five different application groups (distilled water, 1 mM EMS, 1% RCwtr, 3% RCwtr and 5% RCwtr) were formed with preliminary studies. 3-day-old transheterozygous larvae of mwh/flr3 genotype of Drosophila melanogaster were fed chronically on the Drosophila instant medium (DIM) including the application groups. The wing slides of normal wing (mwh/flr3) phenotype individuals were prepared and examined under light microscope (400X).As a result of experiments, the total clone frequencies of distilled water control group, 1 mM EMS, 1% RCwtr, 3% RCwtr and 5% RCwtr application groups were determined as 0.15, 3.55, 2.58, 2.78 and 2.20, respectively. The difference between distilled water control group and 1 mM EMS application group is statistically significant (P<0.05). According to the results obtained from RCwtr application groups, each group’s total clon frequencies decreased compared with 1 mM EMS application group. It was found that the differences between the 1mM EMS and RCwtr. application groups were statistically important too (P<0.05). The findings demonstrate that the constituents of Rosa canina L. have great potential as a natural genoprotective product.Keywords: Rosa canina, SMART, Drosophila melanogaster, Ethyl methanesulfonate, genoprotective Özet. Bu çalışmada, alkilleyici ajanlardan birisi olan etil metansülfonatın olası genotoksik etkileri ve Rosa canina L. meyvelerinin su ekstraktının (RCsu) genomik koruyucu etkisi Drosophila kanat somatik mutasyon ve rekombinasyon testi (SMART) ile araştırılmıştır. Yapılan ön çalışmalar ile beş farklı uygulama grubu (saf su, 1 mM EMS, 1% RCsu, 3%  RCsu ve 5% RCsu) hazırlanmıştır. Drosophila melanogaster’in mwh/flr3 genotipli 3. evre trans-heterozigot larvaları, uygulama gruplarını içeren hazır Drosophila besiyerinde kronik olarak beslenmiştir. Normal kanat fenotipli (mwh/flr3) bireylerin kanat preparatları hazırlanmış ve ışık mikroskobunda incelenmiştir (400X).

___

  • Gocke E., Burgin H., Muller L., Pfister T., 2009. Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol. Lett. 190, 254.
  • Doak S.H., Jenkins G.J.S., Johnson G.E., Quick E., Parry E.M., Parry J.M., 2007. Mechanistic influences for mutation induction curves following exposure to DNA-reactive carcinogens. Cancer Res. 67, 3904.
  • Anyinam C., 1995. Ecology and ethnomedicine: exploring links between current environmental crisis and indigenous medical practices. Soc. Sci. Med. 40, 321.
  • Cemeroglu B., 1992. Basic analysis methods of fruit and vegetable processing industry. Biltav Press: Ankara, 381.
  • Ozcan M., 2000. Antioxidant activity of seafennel (Crithmum maritimum L.) essential oil and rose (Rosa canina) extract on natural olive oil. Acta Aliment. Hung. 29, (4), 377.
  • Serteser A., Kargıoglu M., Gok V., Bagcı Y., Ozcan M.M., Arslan D., 2008. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food Sci. Nutr. 59, (7-8), 643.
  • Hvattum E., 2002. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Sp. 16, 655.
  • Gao X., Björk L., Trajkovski V., Uggla M., 2000. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agr., 80, 2021–2027.
  • Daels-Rakotoarison D.A., Gressier B., Trotin F., Brunet C., Luyckx M., Dine T., Bailleul F., Cazin M., Cazin J.C., 2002. Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother Res, 16, 157–161.
  • Kılıcgun H., Altıner D. 2009. In vitro antioxidant effect of Rosa canina in different antioxidant test systems. Phcog. Res. 1, 417.
  • Uysal H., Kizilet H., Ayar A. and Taheri A., 2015. The use of endemic Iranian plant, Echium amoenum against the ethyl methanesulfonate and the recovery of mutagenic effects, Toxicol. Ind. Health., 31, 44–51.
  • Agrawal R.C., Pandey, S., 2009. Evaluation of anticarcinogenic and antimutagenic potential of Bauhinia variegata extract in Swiss albino mice. Asian Pac. J. Cancer P., 10, 913-916.
  • Ünver S., Uysal H., 2014. Neonikotinoid İnsektisitlere Bağlı Olarak Drosophila melanogaster’in AChE Aktivitesinde Meydana Gelen Değişikliklerin Bitkisel Ekstraktlar ile Giderilmesi Üzerine Araştırmalar. Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi, Cilt 35, No 4.
  • Kan Y., Orhan İ., Koca U., 2009. Fatty acid profile and antimicrobial effect of the seed oils of Urticadioica and U. Pilulifera. Turk. J. Pharm. Sci., 6, 21–30.
  • Halici M., Odabasoglu F., Suleyman H., Cakir A., Aslan A., Bayir Y., 2005. Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine, 12, 656-662.
  • Graf U., Würgler F.E., Katz A.J., Frei H., Juon H., Hall C.B., Kale P.G., 1984. Somatic mutation test in Drosophila melanogaster. Environ. Mol. Mutagen., 6, 153-188.
  • Frei H., Würgler F.E. 1988. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutat. Res. Environ. Mutagen. Relat. Subj. 203, 297.
  • Lai Y.P., Huang J., Wang L.F., Li J., Wu Z.R. 2004. A New Approach to Random Mutagenesis in vitro. Biotechnol. Bioeng. 86, 622.
  • Fatur T., Lah T.T., Filipi M., 2003. Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N- itrosourea-induced DNA damage in Chinese hamster ovary cells. Mutat. Res., 529 109–116.
  • Hernandez-Ceruelos A, Madrigal-Bujaidar E, Cruz C., 2002. Inhibitory effect of chamomile essential oil on the sister chromatid exchanges induced by daunorubicin and methyl methanesulfonate in mouse bone marrow. Toxicol. Lett., 135, 103–110.
  • Donovan P., Smith G., 2010. Mutagenicity of N-ethyl-Nnitrosourea, N-methyl-N- nitrosourea, methyl methanesulfonate and ethyl methanesulfonate in the developing Syrian hamster fetus. Mutat. Res-Gen. Tox. En., 699, 55.
  • Smith C.C., Adkins D.J., Martin E.A., O’donovan M.R., 2008. Recommendations for design of the rat comet assay. Mutagenesis. 23, 233.
  • Kondo K., Suzuki H., Hoshi K., Yasui H., 1989. Micronucleus test with ethyl methanesulfonate administered by intraperitoneal injection and oral gavage. Mutat. Res- Gen Tox. En. 223, 373.
  • Maddock M.L., Northrup H., Ellingham T.J., 1986. Induction of sister chromatid exchange and chromosomal aberrations in hematopoietic tissue of a marine fish following in vivo exposure to genotoxic carcinogens. Mutat. Res., 29, 145–147.
  • Adhikari N., Grover I.S., 1988. Genotoxic effects of same systemic pesticides: in vivo chromosomal aberrations in bone marrow cells in rats. Environ. Mol. Mutagen., 12, 235– 242.
  • Topaktas M., Speit G., 1990. Sister chromatid Exchange (SCE) test make use of determine in the mutagen and carcinogen. Cumhuriyet Medical Journal, 5, 73–84.
  • Madrigal-Bujaidar E., Velazquez N., Morales-Ramirez P., Mendiola M.T., Lagunas A., Chamorro G., 1999. Sister-chromatid exchanges induced by disulfiram in bone marrow and spermatogonial cells of mice treated in vivo. Food Chem. Toxicol., 37, 757–763.
  • Kasimoglu C., Uysal H., 2015. Mutagenic biomonitoring of pirethroid insecticides in human lymphocyte cultures: Use of micronuclei as biomarkers and recovery by Rosa canina extracts of mutagenic effects. Pharm. Biol., 53, 625–629.
  • Kızılet, H., Kasimoğlu, C., Uysal, H., 2013. Can the Rosa canina plant be used against alkylating agents as a radical scavenger? Pol. J. Environ. Stud., 22, 1263-1267.
  • Kaya, B., 2003. Anti-genotoxic effect of ascorbic acid on mutagenic dose of three alkylating agents. Turk J. Biol., 27, 241-246.
  • Westhuizen F.H., Rensburg C.S., Rautenbach G.S., Marnewick J.L., Loots T., Huysamen C., Louw R., Pretorius P.J., Erasmus E., 2008. In vitro antioksidant, antimutagenic and genoprotective activity of Rosa roxburghii fruit extract. Phytother Res, 22, 376-383.
  • Tumbas V.T., Čanadanovic-Brunet J.M., Cetojevic-Simin D.D., Cetkovic G.S., Dilas S.M., Gille L., 2012. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food. Agric., 92, 1273–1281.