Canlı İki Yeşil Mikroalg Üzerinde Nikel (II), Antimon (III), Mangan (II) ve Bakır (II)’ın Dörtlü Adsorpsiyon Etkisi
Bu çalışmada, Chlorella ve Scenedesmus algleri kullanılarak sulu çözeltilerden Ni, Sb, Mn ve Cu adsorpsiyonunun araştırılması amaçlanmıştır. 24 saat inkübasyon süresi boyunca çoklu metal sulu çözeltiden canlı iki mikro alg suşu üzerinde nikel (Ni+2), antimony (Sb+3), mangan (Mn+2) ve bakırın (Cu+2) yarışmalı adsorpsiyon verimliliği incelenmiştir. Metal uygulaması sonrasında, klorofil a-b, toplam karbonhidrat ve atomik kuvvet mikroskobu (AFM) görüntülemesi analiz edilmiştir. Metal iyonlarının adsorpsiyon izoterm modelleri Langmuir ve Freundlich izotermlerine göre belirlenmiştir. Çoklu metal sisteminin Scenedesmus hücreleri tarafından sırasıyla antimon: 10.82 mgg-1, mangan: 7.07 mgg-1, bakır: 27.09 mgg-1 ve nikel: 9.71 mgg-1 (Cu>Sb>Ni>Mn) olarak belirlenirken Chlorella için adsorbsiyon kapasitesi antimon: 6.47 mgg-1, mangan: 5.96 mg g-1, bakır: 28.57 mgg-1 ve nikel: 10.71 mgg-1 (Cu>Ni>Sb>Mn) olarak belirlenmiştir. AFM görüntülerine göre, ağır metallere maruz bırakılmış iki algin hücre duvarında, maruz bırakılmamış hücrelere kıyasla deformasyon tespit edilmiştir. Bu çalışma için Freundlich adsorbsiyon modeli 1/n değerinin 1’den küçük olmasıyla tüm metal iyonları için uygundur. Sonuç olarak, çalışmada elde edilen sonuçlar değerlendirildiğinde, Chlorella ve Scenedesmus hücrelerinin, dört ağır metali, özellikle Cu adsorpsiyonunun yüksek verimliliği nedeniyle, Cu+2 iyonlarının sulu çözeltilerden uzaklaştırılmasında etkili bir adsorbent olduğunu ortaya koymuştur.
Quaternary Adsorption Effect of Nickel (II), Antimony (III), Manganese (II) and Copper (II) onto Living Two Green Microalgae
This study aimed to investigate Ni, Sb, Mn and Cu adsorption from aqueous solution by Chlorellaand Scenedesmus algae. The competitive adsorption efficiency of nickel (Ni2+), antimony (Sb3+), manganese(Mn2+) and copper (Cu2+) onto two living microalgae strains was studied from multi-metal aqueous solution for24h incubation time. After exposure, chlorophyll a-b, total carbohydrate and Atomic force microscopy (AFM)imaging were performed. Then adsorption isotherms models of metal ions were determined based on Langmuirand Freundlich isotherms. The adsorption capacity in multi-metal system was determined 6.47 mgg-1 forantimony, 5.96 mgg-1 for manganese, 28.57 mgg-1 for copperand 10.71 mgg-1 for nickel (Cu>Ni>Sb>Mn) byChlorella respectively, whereas, and 10.82 mg g-1 for antimony, 7.07 mgg-1 for manganese, 27.09 mgg-1 forcopper and 9.71 mgg-1 for nickel(Cu>Sb>Ni>Mn) by Scenedesmus cells. According to AFM images,deformation was detected in two algae cell walls treated with heavy metals compared to untreated cells. For thisstudy, Freundlich adsorption model best fitted the data for all metal ions with 1/n value
___
- Jaishankar M., Tseten T., Anbalagan N.,
Blessy B. Mathew, Krishnamurthy N.
Toxicity, mechanism and health effects of
some heavy metals. Interdiscip Toxicol., 7
(2014) 60–72.
- Basha S., Keane D., Morrissey A., Nolan
K., Oelgemöller M., Tobin J. Studies on
the adsorption and kinetics of
photodegradation of pharmaceutical
compound, indomethacin using novel
photocatalytic adsorbents (IPCAs). Ind.
Eng. Chem. Res., 49 (2010) 11302–
11309.
- Kadirvelu K., Namasivayam C.
Agricutural by-product as metal
adsorbent: Sorption of Lead(II) from
aqueous solution onto coirpith carbon.
Environmental Techn., 21 (2000) 1091–
1097.
- Guanzon N.G.J.R., Nakahara H., Yodhida
Y. Inhibitory effects of heavy metals on
growth and photosynthesis of three
freshwater microalgae. Fish. Sci., 60
(1994) 379–384.
- Kessler E. Limits of growth of live
Chlorella species in the presence of toxic
heavy metals. Arch. Hydrobiol., 73 (1986)
123–128.
- Fayed Sami E., Abdel S., Hussein I.,
Khalifa Nadia M. Accumulation of Cu,
Zn, Cd and Pb by Scenedesmus obliquus
under nongrowth conditions.
Environment Inter., 9 (1983) 409-413.
- Knauer K., Behraa R., Sigg L. Effects of
free Cu2+ and Zn2+ ions on growth and
metal accumulation in freshwater algae.
Environ. Toxicol. Chem., 16 (1997) 220–
229.
- Lopez-Suarez C.E., Castro-Romero J.M.,
Gonzalez-Rodriguez M.V., Gonzalez-
Soto E., Perez-Iglesias J., Seco-Lago
H.M., Fernandez-Solis J.M.S. Study of
the parameters affecting the binding of
metals in solution by Chlorella vulgaris.
Talanta, 50 (2000) 1313–1318.
- Volesky B., R May R, Holan Z.R.
Biosorption of cadmium by biomass of
marine algae. Biotechnology and Bioeng.,
41 (1993) 826-289.
- Ting YP., F. Lawson LG. Uptake of
cadmium and zinc by the alga Chlorella
vulgaris: II. Multi‐ion situation.
Biotechnol. Bioeng., 37 (1991) 445-455.
- Soldo D., Hari R., Sigg L., Behra R.
Tolerance of Oocystis nephrocytioides to
copper: intracellular distribution and
extracellular complexation of copper.
Aquatic Toxicol., 71 (2005) 307- 317.
- Senturk, T., Yildiz, S. Adsorbent effect of
Chlorella vulgaris and Scenedesmus sp.
(Chlorophyta) for the removal of some
heavy metals and nutrients. Turkish J.
Biochem., 41 (2016) 87–95.
- Rachlin J.W., Grosso A. The growth
response of the green alga Chlorella
vulgaris to combined divalent cation
exposure. Arch. Environ. Contam.
Toxicol., 24 (1993) 16–20.
- Heath R.L. Possible mechanisms for the
inhibition of photosynthesis by ozone.
Photosynth. Res., 39 (1994) 439–451.
- Rai L.C., Gaur J.P., Kumar H.D.
Phycology and heavy-metal pollution.
Biol. Rev. Cambridge Philos. Soc., 56
(1981) 99- 151.
- Foy C.D. I., Chaney R.L.,White M.C.
Crassulacean acid metabolism: A
curiosity in context. Annual Review of
Plant Phys., 29 (1978) 551- 566.
- Saleh T.A., Gupta V.K. (b). Synthesis and
characterization of alumina nano-particles
polyamide membrane with enhanced flux rejection performance. Sep Purif
Technol., 89 (2012) 245–251.
- Saleh T.A., Gupta V.K. (a). Photocatalyzed
degradation of hazardous dye
methyl orange by use of a composite
catalyst consisting of multiwalled carbon
nanotubes and titanium dioxide. J. Colloid
Interface Sci., 371 (2012) 101–106.
- Moiseenko TI., Kudryavtseva LP. Trace
metal accumulation and fish pathologies
in areas affected by mining and
metallurgical enterprises in the Kola
region. Environmental Pol., 114 (2001)
285–297.
- Molazadeh P., Khanjani N., Rahimi M.Z.,
Nasiri A. Adsorption of lead by
microalgae Chaetoceros sp. and Chlorella
sp. from aqueous solution. J. Community
Health Research., 4 (2015) 114–127.
- Khorramfar S., Mahmoodi N., Arami M.
Dye removal from colored textile
wastewater using tamarindus indica hull:
Adsorption isotherm and kinetics study. J.
Color Science Technology., 3 (2009) 81–
88.
- Sari A., Tuzen M. Biosorption of Pb(II)
andCd(II) from aqueous solution using
green alga (UIva lactuca) biomass.J. of
Hazardous Materials., 152 (2008) 302–08.
- Freundlich H. Uber die adsorption in
Losungen. Z. Phys. Chem., 57 (1907)
385–470.
- Cucarella V., Renman G. Phosphorus
sorption capacity of filter materials used
for on-site wastewater treatment
determined in batch experiments-a
comparative study. J. Environ. Quality.,
38 (2009) 381–92.
- Dubois M., Gilles A.K., Hamilton J.K.,
Rebers, P.A., Smith, F. Colorimetric
method for determination of sugars and
related substances. Analytical Chemistry.,
28 (1956) 350- 356.
- Parsons T.R., Strickland J.D. Discussion
of pectrophotometric determination ofmarine plant pigments, with revised
equations for ascertaining chlophylls and
carotenoids. J. Marine Research., 21
(1963) 115-63.
- Stanier R.Y., Kunisawa R., Mandel M.,
Choen B. Purification and properties of
unicellular blue- green algae (Order
Chroococcales). Bacteriological Reviews,
35 (1971) 171-205.
- Monisha J., Tenzin T., Naresh A., Blessy
B.M., Krishnamurthy N.B. Toxicity,
mechanism and health effects of some
heavy metals. Interdiscip Toxicol., 7
(2014) 60–72.
- Durrieu C., Guedri H., Fremion F.
Volatier L. Unicellular algae used as
biosensors for chemical detection in
Mediterranean lagoon and coastal waters.
Res. Microbiol., 162 (2011) 908–914.
- Chouteau C., Dzyadevych S., Chovelon,
J.M. Durrieu, C. Biosens. Development of
novel conductometric biosensors based on
immobilised whole cell Chlorella vulgaris
microalgae. Bioelectron., 19 (2004)
1089–1096.
- Torres E., Cid A., Herrero C. Abalde J.
Effect of cadmium on growth, ATP
content, carbon fixation and ultrastructure
in the marine diatom Phaeodactylum
tricornutum Bohlin. Water, Air, Soil
Pollut., 117 (2000) 1–14.
- Wase D.A.J., Forster C.F., Yo Y.S.
Biosorption of heavy metals: An
introduction. In: Biosorbents for Metal
Ions. Taylor and Francis, London, 50
(1997) 141– 163.
- Garnham G.W. The use of algae as metal
biosorbents. In: Biosorbents for metal
ions: Taylor and Francis, London, 50
(1997) 11-37
- (1990) 579-586.
[2]. Wilde E.W., Benemann J.R. Bioremoval
of heavy metals by the use of microalgae.
Biotechnol Adv., 11 (1993) 781–812.
- Aksu Z., Sag Y., Kutsal T. The
biosorpnon of copperod by C. vulgaris
and Z. Ramigera. Environ. Technol., 13
(1990) 579-586.