Stator Feedforward Voltage Estimation Based Sensorless Permanent Magnet Synchronous Generator Drive using Multi-Parameter Estimation Based on MRAS

Bu makalede MRAS tabanlı çoklu-parametre tahmini ile güçlendirilmiş ileri beslemeli stator gerilim tahminine dayanan basit ve verimli bir sensörsüz sürekli mıknatıslı senkron generatör (SMSG) kontrol metodu geliştirilmiştir. Sürekli mıknatıslı senkron generatörün sürekli hal dq-ekseni stator gerilim eşitlikleri önerilen kontrol metoduna uygun olarak ileri beslemeli stator gerilim eşitlikleri haline dönüştürülmektedir. Çeşitli endütriyel uygulamalar için uygun ve basit bir yapısı olması nedeniyle SMSG'nin kontrolünde vektör kontrol sıkça kullanılmaktadır. Güç eşitliğinde maksimum güç, moment ve hızın bir fonksiyonu olarak ifade edilir. Önerilen yöntemde, arka arkaya bağlı konvertör yapısına sahip değişken hızlı rüzgar türbini sistemi, ortak DC-baraya bağlanmıştır. Bu makalede, önerilen sensörsüz kontrol metodu TMS320F28335 DSP tarafından kontrol edilen 1 kW PMSG sürücü ile gerçek zamanlı deneysel olarak nominal hızın %10'u (300 rpm) değerindeki düşük hızda çoklu parametre değişimi altında başarı ile gerçekleştirilmiştir

MRAS Tabanlı Çoklu-Parametre Tahmini ile Güçlendirilmiş İleri Beslemeli Stator Gerilim Tahminine Dayanan Sensörsüz Sürekli Mıknatıslı Senkron Generatör Kontrolü

A simple and efficient position sensorless control method based on feedforward voltage estimation for PMSG improved with multi-parameter estimation using MRAS is proposed in this paper. The dynamically enhanced stator feedforward dq‒axes voltages that are derived from steady-state PMSG model are modified for the sensorless drive. In direct-drive wind turbine systems, because of low backEMF amplitude in the generator output at very low speed operation, the rotor flux linkage cannot be predicted correctly. Vector control is often used in PMSG control, because it has a simple structure and is suitable for various industrial systems. In the power equation, maximum power is obtained as a function of torque and speed. In the proposed method, a variable-speed wind turbine system with back to back converter structure is connected to common DC-link. In this paper, the proposed sensorless control scheme has been implemented with 1 kW PMSG drive controlled by a TMS320F28335 DSP for low speed at 0.1 p.u. (300 rpm) is achieved under multi-parameter variations

___

  • 1. Dasgupta, S., Mohan, S.N., Sahoo, S.K. Panda, S.K., 2013. Application of Four-Switch-Based Three-Phase Grid-Connected Inverter to Connect Renewable Energy Source to a Generalized Unbalanced Microgrid System. IEEE Transactions on Industrial Electronics, 60(3), 12041215.
  • 2. Iov, F., Blaabjerg, F., 2009. Power Electronics and Control for Wind Power Systems, IEEE Power Electronics and Machines in Wind Applications, PEMWA, 116.
  • 3. Parviainen, A., Pyrhonen, J., Kontkanen, P., 2005. Axial Flux Permanent Magnet Generator with Concentrated Winding for Small Wind Power Applications, 11871191.
  • 4. Bumby, J.R., Stannard, N., Dominy, J., McLeod, N., 2008. A Permanent Magnet Generator for Small Scale Wind and Water Turbines, 16.
  • 5. Andriollo, M., De Bortoli, M., Martinelli, G., Morini, A., Tortella, A., 2008. Permanent Magnet Axial Flux Disc Generator for Small Wind Turbines, 16.
  • 6. Olano, A., Moreno, V., Molina, J., Zubia, I., 2008. Design and Construction of an OuterRotor PM Synchronous Generator for Small Wind Turbines; Comparing Real Results with Those of FE Model, 16.
  • 7. Haraguchi, H., Morimoto, S., Sanada, M., 2009. Suitable Design of a PMSG for a SmallScale Wind Power Generator, 16.
  • 8. Zhang, Z., Zhao, Y., Qiao, W., Qu, L., 2014. A Space-Vector-Modulated Sensorless DirectTorque Control for Direct-Drive PMSG Wind Turbines, IEEE Transactions on Industry Applications, 50(4), 23312341.
  • 9. Benadja, M., Chandra, A., 2014. Sensorless Control for Wind Energy Conversion System (WECS) with Power Quality Improvement, IEEE PES General Meeting| Conference & Exposition, 15.
  • 10. Hu, K.W., Liaw, C.M., 2015. Position Sensorless Surface-Mounted PermanentMagnet Synchronous Generator and its Application to Power DC Microgrid. IET Power Electronics, 8(9), 16361650.
  • 11.Baroudi, J.A., Dinavahi, V., Knight, A.M., 2007. A Review of Power Converter Topologies for Wind Generators. Renewable Energy, 32(14), 23692385.
  • 12. Muller, S., Deicke, M., De Doncker, R.W., 2002. Doubly Fed Induction Generator Systems for Wind Turbines. IEEE Industry Applications Magazine, 8(3), 2633.
  • 13. Qiao, W., Zhou, W., Aller, J.M., Harley, R.G., 2008. Wind Speed Estimation Based Sensorless Output Maximization Control for A Wind Turbine Driving a DFIG. IEEE Transactions on Power Electronics, 23(3), 11561169.
  • 14. Guo, L., Zhang, X., Yang, S., Xie, Z., Qi, L., Wang, L., 2015. Super-Twisting Sliding Mode Observer Based Speed Sensorless Torque Control for PMSG Used in Wind Turbines, 24572462.
  • 15. Ding, Z., Wei, G., Ding, X., 2014. PMSM Control System Based on Sliding Mode Technology and MRAS Method. IEEE International Conference on Mechatronics and Control (ICMC), 12761281.
  • 16. Koch, G., Gabbi, T., Henz, G., Vieira, R.P., Pinheiro, H., 2015. Sensorless Technique Applied to PMSG Of WECS Using Sliding Mode Observer. IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), 16.
  • 17. Han, Y.S., Choi, J.S., Kim, Y.S., 2000. Sensorless PMSM Drive with a Sliding Mode Control Based Adaptive Speed and Stator Resistance Estimator. IEEE Transactions on Magnetics, 36(5), 35883591.
  • 18. Yan, J., Lin, H., Feng, Y., Guo, X., Huang, Y., Zhu, Z.Q., 2013. Improved Sliding Mode Model Reference Adaptive System Speed Observer for Fuzzy Control of Direct-Drive Permanent Magnet Synchronous Generator Wind Power Generation System. IET Renewable Power Generation, 7(1), 2835.
  • 19. Akatsu, K., Kawamura, A., 2000. Sensorless Very Low-Speed and Zero-Speed Estimations with Online Rotor Resistance Estimation of Induction Motor Without Signal Injection. IEEE Transactions on Industry Applications, 36(3), 764771.
  • 20. Eskola, M., Tuusa, H., 2003. Comparison of MRAS and Novel Simple Method for Position Estimation in PMSM Drives, vol. 2, 550555.
  • 21.Burth, M., Verghese, G.C., Vélez-Reyes, M., 1999. Subset Selection for Improved Parameter Estimation in On-line Identification of a Synchronous Generator, IEEE Transactions on Power Systems, 14(1), 218225.
  • 22. Liu, K., Zhu, Z.Q., Stone, D.A., 2013. Parameter Estimation for Condition Monitoring of PMSM Stator Winding and Rotor Permanent Magnets, IEEE Transactions on Industrial Electronics, 60(12), 59025913.
  • 23.Chan, T.F., Wang, W., Borsje, P., Wong, Y.K., Ho, S.L., 2008. Sensorless Permanent-Magnet Synchronous Motor Drive Using a ReducedOrder Rotor Flux Observer. IET Electric Power Applications, 2(2), 8898.
  • 24.Rigatos, G., Siano, P., Zervos, N., 2014. Sensorless Control of Distributed Power Generators with the Derivative-free Nonlinear Kalman Filter, IEEE Transactions on Industrial Electronics, 61(11), 63696382.
  • 25. Shasadeghi, M., Mardanah, M., Nayeripour, M., Mansuri, M., 2015. Sensor Less Control of PMSG-based Wind Turbine with Parallel Distributed Compensator with Fuzzy Observer, 3540.
  • 26.Benadja, M., Chandra, A., 2015. Adaptive Sensorless Control of Pmsgs-Based Offshore Wind Farm and VSC-HVDC Stations, IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 918931
  • 27. Li, H., Shi, K.L., McLaren, P.G., 2005. NeuralNetwork-Based Sensorless Maximum Wind Energy Capture with Compensated Power Coefficient. IEEE Transactions on Industry Applications, 41(6), 15481556.
  • 28.Inoue, Y., Yamada, K., Morimoto, S., Sanada, M., 2007. Accuracy Improvement of IPMSM Sensorless Drives with On-line Parameter Identification, 860866.
  • 29.Colovic, I., Kutija, M., Sumina, D., 2014. Rotor Flux Estimation for Speed Sensorless Induction Generator Used in Wind Power Application, 2327.
  • 30. Liu, K., Zhu, Z.Q., 2014. Online Estimation of the Rotor Flux Linkage and Voltage-source Inverter Nonlinearity in Permanent Magnet Synchronous Machine Drives, IEEE Transactions on Power Electronics, 29(1), 418427.
  • 31. Lei, T., Barnes, M., Smith, S., Hur, S.H., Stock, A., Leithead, W.E., 2015. Using Improved Power Electronics Modeling and Turbine Control to Improve Wind Turbine Reliability. IEEE Transactions on Energy Conversion, 30(3), 10431051.
  • 32.Jung, S.M., Park, J.S., Kim, H.W., Cho, K.Y., Youn, M.J., 2013. An MRAS-Based Diagnosis of Open-circuit Fault in PWM Voltage-source Inverters for PM Synchronous Motor Drive Systems, IEEE Transactions on Power Electronics, 28(5), 25142526.
  • 33. Xiao, X., Chen, C., Zhang, M., 2010. Dynamic Permanent Magnet Flux Estimation of Permanent Magnet Synchronous Machines. IEEE Transactions on Applied Superconductivity, 20(3), 10851088.
  • 34. Dumnic, B., Katic, V., Vasic, V., Milicevic, D., Delimar, M., 2012. An Improved MRAS Based Sensorless Vector Control Method for Wind Power Generator, Journal of Applied Research and Technology, 10(5), 687697.
  • 35.Bose, B.K., 1997. Power Electronics and Variable Frequency Drives: Technology and Applications, 3676.
  • 36. Krishnan, R., 2009. Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press.
  • 37. Diaz, S.A., Silva, C., Juliet, J., Miranda, H.A., 2009. Indirect Sensorless Speed Control of a PMSG for Wind Application, 18441850.
  • 38. Holtz, J., 2002. Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 90(8), 13591394.
  • 39. Okuyama, T., Fujimoto, N., Fujii, H., 1990. A Simplified Vector Control System Without Speed and Voltage Sensors-effect of Setting Errors of Control Parameters and Their Compensation. Electrical Engineering in Japan, 110(4), 129139.
  • 40. Akatsu, K., Kawamura, A., 2000. Online Rotor Resistance Estimation Using the Transient State Under the Speed Sensorless Control of Induction Motor, IEEE Transactions on Power Electronics, 15(3), 553560.
  • 41. Underwood, S.J., Husain, I., 2010. Online Parameter Estimation and Adaptive Control of Permanent-magnet Synchronous Machines, IEEE Transactions on Industrial Electronics, 57(7), 24352443.
  • 42.Bolognani, S., Peretti, L., Zigliotto, M., 2008. Parameter Sensitivity Analysis of an Improved Open-Loop Speed Estimate for Induction Motor Drives. IEEE Transactions on Power Electronics, 23(4), 21272135.
  • 43. Ozturk, S.B., Akin, B., Toliyat, H.A., Ashrafzadeh, F., 2006. Low-cost Direct Torque Control of Permanent Magnet Synchronous Motor Using Hall-effect Sensors, 714.
  • 44. Lu, Z., Sheng, H., Hess, H.L., Buck, K.M., 2005. The Modeling and Simulation of a Permanent Magnet Synchronous Motor with Direct Torque Control Based on Matlab/simulink, IEEE International Conference on Electric Machines and Drives, 7.
  • 45. Seok, J.K., Lee, J.K., Lee, D.C., 2006. Sensorless Speed Control of Nonsalient Permanent-magnet Synchronous Motor Using Rotor-position-tracking PI Controller, IEEE Transactions on Industrial Electronics, 53(2), 399405.
  • 46. Stumberger, B., Stumberger, G., Dolinar, D., Hamler, A., Trlep, M., 2003. Evaluation of Saturation and Cross-magnetization Effects in Interior Permanent-magnet Synchronous Motor, IEEE Transactions on Industry Applications, 39(5), 12641271.
  • 47.Rusu, C., Radulescu, M.M., Enikö, S., Melinda, R.K., Jakab, Z.L., 2014. Embedded Motor Drive Prototype Platform for Testing Control Algorithms, International Conference on Applied and Theoretical Electricity (ICATE), 16.
  • 48. Marcetic, D.P., Vukosavic, S.N., 2007. Speedsensorless AC Drives with the Rotor Time Constant Parameter Update, IEEE Transactions on Industrial Electronics, 54(5), 26182625.
  • 49. Mouna, B.H., Lassaad, S., 2006. Speed Sensorless Indirect Stator Field Oriented Control of Induction Motor Based on Luenberger Observer, IEEE International Symposium on Industrial Electronics, vol. 3, 24732478.
  • 50. Shi, Y., Sun, K., Huang, L., Li, Y., 2012. Online Identification of Permanent Magnet Flux Based on Extended Kalman Filter for IPMSM Drive with Position Sensorless Control, IEEE Transactions on Industrial Electronics, 59(11), 41694178.