Kent Geometrisine Bağlı Olarak Kentsel Isı Adası Etkisinin Belirlenmesi: Konya Örneği

Kentsel ısı adası etkisi, kentlerin yapısal yoğunluklarının artması sonucu gözlemlenen olumsuz bir mikroklimatik koşuldur. Çalışmada Konya kenti bağlamında seçilen 4 bölgede, kentsel dokuların geometrik oluşumuna bağlı olarak maksimum kentsel ısı adası etkileri belirlenmiştir. Elde edilen sonuçlar dikkate alındığında, maksimum ısı adası etkisinin, gökyüzü açıklıkların düşük olduğu yoğun kentsel alanlarda yüksek değerlerde olabileceği belirlenmiştir. Gökyüzü açıklık değerleriyle ısı adası etkisi arasında ters orantı söz konusudur. Konya kenti için az yoğun yerleşim alanlarının (yüksek SVF değerleri) planlanması daha uygun bir yaklaşım olabileceği sonucuna varılmıştır. Bu durumda, yaz dönemlerinde kent ortamında gece oluşan ısı adası etkisinin azaltılmasının ve kışın da binaların az yoğun yapılaşmaya bağlı olarak güneşten pasif olarak yararlanabilmelerinin mümkün olabileceği belirtilmiştir. Son olarak ülkemiz koşullarında planlama ve tasarım aşamalarında yapılaşma yoğunlukları belirlenirken SVF parametresinin bir girdi olarak değerlendirilmesinin gerekliliğine vurgu yapılmıştır

Determination of the Urban Heat Island Effect Related to Urban Geometry the Example of Konya

Urban heat island effect is a negative microclimatic condition observed as a result of the increasing of the cities density. In this study, the maximum urban heat island effects were determined according to the geometric formation of urban fabric of 4 areas selected in the context of Konya city. According to the obtained results, it was determined that maximum urban heat island effect has high intensity in dense urban areas where the sky opening values are low. There is an inverse relationship between sky opening values and heat island effect. It was concluded that planning urban areas with low density (high SVF values) for Konya city would be a more appropriate approach. In this case, it may be possible to reduce nocturnal heat island effect during the summer period in urban environment and the possibility for buildings to benefit from the sun in a passive way due to the less construction density. Finally, emphasis was made on the evaluation necessity of SVF parameter as a input in determination of construction densities in the planning and design phases in our country conditions

Kaynakça

1. Nakata C., Souza L., 2013. Verification of the Influence of Urban Geometry on the Nocturnal Heat Island Intensit, Journal of Urban and Environmental Engineering, 7(2), 286-292.

2. Allegrini, J., Dorer, V., Carmeliet, J., 2015. Influence of Morphologies on the Microclimate in Urban Neighbourhoods. Journal of Wind Engineering and Industrial Aerodynamics, 144, 108-117.

3. Mirzaei, P.A., Haghighat, F., 2010. Approaches to Study Urban Heat IslandAbilities and Limitations. Building and Environment, 45 (10), 2192-2201.

4. Chung, M.H., Park, J.C., 2016. Development of PCM Cool Roof System to Control Urban Heat Island Considering Temperate Climatic Conditions. Energy and Buildings, 116, 341-348.

5. Rzepa, M., 2009. The Map of Sky View Factor in the Center of Lodz, The Seventh International Conference on Urban Climate, Yokohama.

6. Guo, G., Zhou, X., Wu, Z., Xiao, R., Chen, Y., 2016. Characterizing the Impact of Urban Morphology Heterogeneity on Land Surface Temperature in Guangzhou, China, Environmental Modelling and Software, 84, 427-439.

7. Cheung, H.K.W., Coles, D., Levermore, G.J., 2016. Urban Heat Island Analysis of Greater Manchester Uk Using Sky View Factor Analysis, Building Services Engineering Research and Technology, 37, 5-17.

8. Oke, T.R., 1981. Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations. Journal of Climatology, 1(3), 237-254.

9. White, M., Kimm, G., 2015. Measuring Sky View Factor of Urban Canyons Using Hacked Gopro Hemispheric Video Processing, Living and Learning: Research for a Better Built Environment: 49th International Conference of the Architectural Science Association, Melbourne.

10. Athamena, K., 2012. Modelling and Simulation of Urban Microclimates : Study of the Impact of Urban Morphology on Comfort in Outside Spaces, Cases of Eco-Districts, Doctorate Thesis, Ecole Centrale de Nantes (ECN).

11. Steemers, K.A., Ramos, M.C., Sinou, M., 2004. Urban Morphology, Rediscovering the Urban Realm and Open Spaces, Designing Open Space in the Urban Environment: A Bioclimatic Approach M. Nikolopoulou, Editor, Centre for Renewable Energy Sources, CRES, Department of Buildings, Greece, 20-25.

12.Rizwan, A.M., Dennis, L.Y.C., Liu, C., 2008. A Review on the Generation, Determination and Mitigation of Urban Heat Island, Journal of Environmental Sciences, 20(1), 120-128.

13. Göksu, Ç., 1999. Güneş Kent, 2 ed., Göksu Yayınları, Ankara.

14.Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., He, Z, 2012. Sky View Factor Analysis of Street Canyons and its Implications for Daytime Intra-Urban Air Temperature Differentials in High-Rise, High-Density Urban Areas of Hong Kong: A GIS-Based Simulation Approach, International Journal of Climatology, 32(1), 121-136.

15. Paramita, B., Fukuda, H., 2014. Heat Intensity of Urban Built Environment in Hot Humid Climate Region. American Journal of Environmental Sciences, 10(3), 210-218.

16.Bouyer, J., 2009. Modelling and Simulation of Urban Microclimates-Study of the Urban Planning Impact on the Buildings Energy Consumption, Doctorate Thesis, Université de Nantes.

17. Theophilou, M.K., Serghides, D., 2015. Estimating the Characteristics of the Urban Heat Island Effect in Nicosia, Cyprus, Using Multiyear Urban and Rural Climatic Data and Analysis, Energy and Buildings, 108, 137-144.

18. Tsoka, S., 2011. Relations Entre Morphologie Urbaine, Microclimate et Confort des Piétons: Application au Cas des Ecoquartiers, Master Thesis, Centre Scientifique et Technique du Bâtiment [CSTB], Nantes.

19. Mathew, A., S. Khandelwal, S., Kaul, N., 2016. Spatial and Temporal Variations of Urban Heat Island Effect and the Effect of Percentage Impervious Surface Area and Elevation on Land Surface Temperature: Study of Chandigarh City, India. Sustainable Cities and Society, 26, 264-277.

20. Ward, K., Lauf, S., Kleinschmit, B., Endlicher, W., 2016. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Science of the Total Environment, 569-570, 527-539.

21. Gál, T., Lindberg, F., Unger, J., 2008. Computing Continuous Sky View Factors Using 3D Urban Raster and Vector Databases: Comparison and Application to Urban Climate. Theoretical and Applied Climatology, 95(1-2), 111-123.

22. Unger, J., 2009. Connection Between Urban Heat Island and Sky View Factor Approximated by a Software Tool on a 3D Urban Database, International Journal of Environment and Pollution, 36 (1-3), 59-80.

23. Debbage, N., 2013. Sky-View Factor Estimation: A Case Study of Athens, Georgia. Geographical Bulletin-Gamma Theta Upsilon, 54(1), 49-57.

24. Zhu, S., Guan, H., Bennet, J., Clay, R., Ewenz, C., Benger, S., Maghrab, A., Millington, A.C., 2013. Influence of Sky Temperature Distribution on Sky View Factor and its Applications in Urban Heat Island. International Journal Of Climatology, 33(7), 1837-1843.

25. Li, W., Putra, S.Y., Yang, P.P.J., 2004. GIS Analysis for the Climatic Evaluation of 3D Urban Geometry. The Development of GIS Analytical Tools for Sky View Factor, GISDECO: Roceedings of the 7th International Conference on GIS for Developing Countries, Johor, Malaysia.

26. Liao, J.W.L., Cavaleri, M.M., 2014. The Study of Sky View Factor, Urban Morphologies: Computational Tools and Methods of Analysis, 30th International PLEA Conference Sustainable Habitat for Developing SocietiesChoosing the Way Forward, Ahmedabad, India, Cept University Press Centre for Documentation & Publications.

27. Kakon, A.N., Nobuo, M., 2009. The Sky View Factor Effect on The Microclimate of a City Environment: A Case Study of Dhaka City, The Seventh International Conference on Urban Climate, Yokohama Japan, 29 June-3 July.

28. Krüger, E.L., Bröde, P., 2013. Analyzing the Relationship between Local Urban Morphology and Predicted Thermal Perception, 29th PLEA 2013 Conference, Sustainable Architecture for a Renewable Future, Munich, Germany.

29. Yuan, C., Chen, L., 2011. Mitigating Urban Heat Island Effects in High-Density Cities Based on Sky View Factor and Urban Morphological Understanding: A Study of Hong Kong. Architectural Science Review, 54(4), 305-315.

30.Rafiee, A., Dias, E., Koomen, E., 2016. Local Impact of Tree Volume on Nocturnal Urban Heat Island: A Case Study in Amsterdam. Urban Forestry & Urban Greening, 16, 50-61.

31. Hu, Y., White, M., Ding, W., 2016. An Urban Form Experiment on Urban Heat Island Effect in High Density Area, Procedia Engineering. 32. Wu, X., Liu, N., 2014. Study of the Relationship between Sky View Factor and Urban Plaza Conformation, New Urban Configurations, 574-582.

33. Svensson, M.K., 2004. Sky View Factor Analysis, Implications for Urban Air Temperature Differences, Meteorological Applications, 11(3), 201-211.

34. Wenjing, L., 2005. Using Sky View Factor As an Indicator for GIS-Based Analysis of 3D Urban Geometry in Relation to Thermal Performance, Master Thesis, Department of Architecture School of Design and Environment, National University of Singapore.

35. Li, W., Putra, S.Y., Yang, P.P.J., 2004. Climatic Performance of 3D Urban Geometry: GIS-Based Analyses on Sky View Factor Patterns, IUPEA6, Louisville.

36. Oke, T.R., 1987. Boundary Layer Climates. second ed., Routledge Taylor & Francis Group.

37. Montávez, J.P., González-Rouco, J.F., Valero, F., 2008. A Simple Model for Estimating the Maximum Intensity of Nocturnal Urban Heat Island. International Journal of Climatology, 28(2), 235-242.

Kaynak Göster