Performance and Economic Analysis of a Variable Refrigerant Flow (VRF) System

Bu çalışma kapsamında, değişken soğutucu akışkan debili (VRF) bir klima sisteminin ekserjetik modellemesi ve performans değerlendirmesi ele alınmıştır. Soğutma koşulları için sistem performansını araştırılabilmek için bir deney düzeneği kurulmuştur. Sistem esas olarak bir dış üniteden ve iki iç üniteden oluşmaktadır. İki adet kompresör (bir değişken hız ve bir sabit hız), konderser ve dört yollu valf ile donatılmış dış ünite, iki içi üniteye bağlanmıştır. Bu çalışmada sisteme ekserji, maliyet, enerji ve kütle (EXCEM) analizi uygulanmış ve termodinamik kayıplar ile maliyetler arasındaki ilişkiler parametrik olarak incelenmiştir. Deneysel sonuçlar, en büyük tersinmezliğin (ekserji tahribatının) kondenserde meydana geldiğini ve bunu evaporatörlerin izlediğini göstermektedir. Ekserjetik ürün/yakıt bazında sistemin ekserji verimi, 25 °C referans sıcaklığında % 85,84 olarak hesaplanmıştır. Bu çalışmada ele alınan koşullarda, sistemin ekserji verimi ve ekserji kayıp oranları sırasıyla % 85,27-86,55 ve 0,919-0,916 MW/USD aralığındadır

Değişken Soğutucu Akışkan Debili Bir Sistemin Performans ve Ekonomik Analizi

This study deals with the exergetic modeling and performance/cost evaluation of a variable refrigerant flow (VRF) air conditioning system. An experimental setup was established to investigate the system performance under cooling conditions. System mainly consists of one outdoor unit and two indoor units. Outdoor unit equipped with two compressors (one variable speed and one constant speed), condenser, and four way valve is connected to two indoor units. Exergy, cost, energy and mass (EXCEM) analysis was applied to this system for the first time to the best of the authors` knowledge. The relations between thermodynamic losses and capital costs were also parametrically investigated. Experimental results show that the greatest irreversibility (exergy destruction) occurs in the condenser, followed by the evaporators. Exergy efficiency of the whole system on the exergetic product/fuel basis was calculated to be 85.84% at a reference state temperature of 25 oC. Exergy efficiency and exergy loss rate were in the range of 85.27-86.55% and 0.919-0.916 MW/USD, respectively, based upon the conditions and parameters considered in the present study

___

  • 1. Huang, W.Z., Zaheeruddin, M., Cho, S.H., 2006. Dynamic Simulation of Energy Management Control Functions for HVAC Systems in Buildings, Energy Conversion and Management 47 (7–8), 926-943.
  • 2. International Energy Agency (IEA), World Energy Outlook, OECD/IEA, France, 2012. www.worldenergyoutlook.org/publications/weo- 2012/.
  • 3. Ürge-Vorsatz, D., Cabeza, L., Serrano, S., Barreneche C., Petrichenko, K., 2015. Heating and Cooling Energy Trends and Drivers in Buildings, Renewable and Sustainable Energy Reviews 41, 85-98.
  • 4. Goetzler, W., 2007. Variable Refrigerant Flow Systems, ASHRAE Journal 49 (4), 24-31.
  • 5. Aynur, T.N., Hwang, Y., Radermacher, R., 2008a. Experimental Evaluation of the Ventilation Effect on the Performance of a VRV System in Cooling Mode-Part I: Experimental evaluation, HVAC&R Research, Vol.14, No.4, 615-630.
  • 6. Aynur, T.N., Hwang, Y., Radermacher, R., 2008b. Simulation Evaluation of the Ventilation Effect on the Performance of a VRV System in Cooling Mode—Part II: Simulation Evaluation. HVAC&R Research, Vol. 14, No. 5, 783-795.
  • 7. Aynur, T.N., 2010. Variable Refrigerant Flow Systems: A review, Energy and Buildings 42: 1106-1112.
  • 8. Jain, N., Koelna, J., Sundaramb, S., Alleynea, A., 2014. Partially Decentralized Control of Large-scale Variable-Refrigerant-Flowsystems in Buildings, Journal of Process Control 24, 798-819.
  • 9. Kwon, L., Lee, H., Hwang, Y., Radermacher, R., Kim, B., 2014. Experimental Investigation of Multifunctional VRF System in Heating and Shoulder Seasons, Applied Thermal Engineering 66, 355-364.
  • 10. Aynur, T.N., Hwang, Y., Radermacher, R., 2010a. Integration of Variable Refrigerant Flow and Heat Pump Desiccant Systems for the Cooling Season, Applied Thermal Engineering 30, 917-927.
  • 11. Aynur, T.N., Hwang, Y., Radermacher, R., (2010b). Integration of Variable Refrigerant Flow and Heat Pump Desiccant Systems for the Heating Season, Energy and Buildings 42, 468-476.
  • 12. Zhu, Y., Jin, X., Fang, X., Du, Z., 2014. Optimal Control of Combined Air Conditioning System with Variable Refrigerant Flow and Variable Air Volume for Energy Saving, International Journal of Refrigeration 42, 14-25.
  • 13. Aynur, T.N., Hwang, Y., Radermacher, R., 2009. Simulation Comparison of VAV and VRF Air Conditioning Systems in an Existing Building for the Cooling Season, Energy and Buildings 41: 1143-1150.
  • 14. Liu, X., Hong, T., 2010. Comparison of Energy Efficiency between Variable Refrigerant Flow Systems and Ground Source Heat Pump Systems, Energy and Buildings 42, 584-589.
  • 15. Kwon, L., Hwanga, Y., Radermachera, R., Kimb, B., 2012. Field Performance Measurements of a VRF System with Subcooler in Educational Offices for the Cooling, Season. Energy and Buildings 49, 300-305.
  • 16. Hepbasli, A., 2008. A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future, Renewable and Sustainable Energy Reviews 12, 593-661.
  • 17. Hürdoğan, E., 2016. Thermodynamic Analysis of a Diesel Engine Fuelled with Diesel and Peanut Biodiesel, Environmental Progress & Sustainable Energy, 35 (3), 891-897.
  • 18. Peng, S., Hong, H., 2015. Exergy Analysis Of Solar Gas Turbine System Coupled With Kalina Cycle, Int. J. of Exergy, 18(2), 192–213.
  • 19. Ceylan, Ġ., Gürel, A.E., 2015. Exergetic Analysis of a New Design Photovoltaic and Thermal (PV/T) System, Environmental Progress & Sustainable Energy, 34 (4), 1249-1253.
  • 20. Taufiq, B.N., Masjuki, H.H., Mahlia, T.M.I., Amalina, M.A., Faizul, M.S., Saidur, R., 2007. Exergy Analysis of Evaporative Cooling for Reducing Energy use in a Malaysian Building, Desalination 209, 238-243.
  • 21. Sakulpipatsin, P., Van Der Kooi, H.J., Itard, L.C.M., Boelman, E.C., 2008. The Influence of Possible Definitions of a Reference Environment to Determine the Exergy of Air in Buildings, Int. J. of Exergy, 5(3), 275-295.
  • 22. Rafique, M.M., Gandhidasan, P., Rehman, S., Alhems, L.M., 2016. Performance Analysis of a Desiccant Evaporative Cooling System under Hot and Humid Conditions, Environmental Progress & Sustainable Energy, 35 (5), 1476-1484.
  • 23. Hürdoğan, E., Büyükalaca, O., Hepbasli, A., Yılmaz, T., 2011. Exergetic Modeling and Experimental Performance Assessment of a Novel Desiccant Cooling System for Buildings, Energy and Buildings 43, 1489-98.
  • 24. Özbek, A., 2016. Exergy Characteristics of a Ceiling-type Residential Air Conditioning System Operating under Different Climatic Conditions, Journal of Mechanical Science and Technology 30 (11), 5247-5255.
  • 25. Holman, J.P., 1989. Experimental Methods for Engineers, Fifth edn, McGraw Hill, NY.
  • 26. Rosen, M.A., Dincer, I., 2003. Exergoeconomic Analysis of Power Plants Operating on Various Fuels, Appl Therm Eng, 23:643–58.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ