The Technical Revisions Required to Prevent Electricity Theft

Elektrik kaçırma gelişen ve gelişmekte olan birçok ülkede etraflı bir problemdir. Elektrik kaçırma büyük ekonomik kayıplara neden olmasına ve güç şebekelerinin güvenirliliğini azaltmasına rağmen bu problem büyümeye devam etmektedir. Bu çalışmada, elektrik kaçırmayı engellemek için gerekli olan revizyonlar belirtilmekte ve bu revizyonları içeren yeni dağıtım şebekesi konfigürasyonu gösterilmektedir. Geleneksel şebekelerde dağıtım gerilimi elektrikli cihazlarda doğrudan kullanılabilirdir. Kullanılabilir dağıtım gerilimi elektrik kaçırmayı kolaylaştırdığından önerilen konfigürasyonda en önemli revizyon bozuk dağıtım gerilimidir. Ancak, dürüst olmayan tüketiciler sayaç kurcalama, kanunsuz bağlantı, aydınlatma hattını kullanma ev kontrol paneline müdahale gibi çeşitli elektrik kaçırma teknikleri kullanmaktadır. Bu yüzden, önerilen şebeke konfigürasyonu yaygın olarak kullanılan elektrik kaçırma teknikleri göz önüne alınarak tasarlanmıştır

Elektrik Kaçırmayı Engellemek için Gerekli Olan Teknik Revizyonlar

Electricity theft is a comprehensive problem in both developing and developed countries. Although the theft causes great economic losses and reduces reliability of power grids, the problem continues to grow. In this study, the revisions required to prevent electricity theft are specified and a new distribution grid configuration with revisions is presented. Distorted distribution voltage is the most significant revision in the new configuration since traditional distribution voltage is directly consumable in electric powered devices and facilitates the theft. But, dishonest customers utilize various theft techniques such as power meter tampering, illegal connections to the streetlights line and manipulation of power control panel. Therefore, the proposed grid configuration was designed by considering widely used electricity theft techniques

___

  • 1. Depuru, S.S.S.R., Wang, L., Devabhaktuni, V., 2011. Electricity Theft: Overview, Issues, Prevention and a Smart Meter Based Approach to Control Theft. Energy Policy, 39, 1007-1015.
  • 2. Seger, K.A., Icove, D.J., 1988. Power Theft the Silent Crime. FBI Law Enforcement Bulletin, 57-3, 20-25.
  • 3. Smith, T.B., 2004. Electricity Theft: A Comparative Analysis. Energ Policy, 32, 2067–2076.
  • 4. Northeast Group, 2015. Emerging Markets Smart Grid: Outlook 2015. http://www. North east-group.com/reports.
  • 5. Alam, M.S., Kabir, E., Rahman, M.M., Chowdhury, M.A.K., 2004. Power Sector Reform in Bangladesh: Electricity Distribution System. Energy, 29, 1773–1783.
  • 6. Reuters, 2014. India to Invest $4 Billion to Tackle Power Theft. http://in.reuters.com/ artic le/india-electricity
  • 7. Jamil, F., 2013. On the Electricity Shortage, Price and Electricity Theft Nexus. Energy Policy, 54, 267–272.
  • 8. Lewis, F.B., 2015. Costly “Throw-Ups”: Electricity Theft and Power Disruptions. The Electricity Journal, 28, 118–135.
  • 9. Monedero, I., Biscarri, F., León, C., Guerrero, J.I., Biscarri, J., Millán, R., 2012. Detection of Frauds and Other Non-Technical Losses in a Power Utility Using Pearson Coefficient, Bayesian Networks and Decision Trees. International Journal of Electrical Power and Energy Systems, 34, 90–98.
  • 10. Guerrero, J.I., León, C., Monedero, I, Biscarri, F, Biscarri, J., 2014. Improving KnowledgeBased Systems with Statistical Techniques, Text Mining, and Neural Networks for NonTechnical Loss Detection. Knowledge-Based Systems, 71, 376–388.
  • 11. Depuru, S.S.S.R., Wang, L., Devabhaktuni, V., Green, R.C., 2013. High Performance Computing for Detection of Electricity Theft. International Journal of Electrical Power and Energy Systems, 47, 21–30.
  • 12.Cabral, J.E., Pinto, J.O.P., Linares, K.S.C., Pinto, A.M.A.C., 2006. Methodology for Fraud Detection using Rough Sets. IEEE International Conference on Granular Computing; 10-12 May Atlanta, GA, USA: IEEE. 244–249.
  • 13. Nagi, J., Yap, K.S., Tiong, S.K., Ahmed, S.K., Mohamad, M., 2010. Nontechnical Loss Detection for Metered Customers in Power Utility using Support Vector Machines. IEEE Transaction on Power Delivery, 25, 1162-1171.
  • 14.Ibrahim, E.S., Management of Loss Reduction Projects for Power Distribution Systems. Electrical Power System Research, 55, 49–56.
  • 15. Ghajar, R.F., Khalife, J., 2003. Cost/Benefit Analysis of an AMR System to Reduce Electricity Theft and Maximize Revenues for Électricité du Liban. Applied Energy, 76, 25–37.
  • 16. Kripasagar, V., 2014. Tamper Detection in Processor-Based Energy Meters. Texas Ins. http://www.electronicproducts.com/Power_Pro ducts.
  • 17. Stefan, S., Kripasagar, V., 2009. Implementing an Electronic Watt-Hour Meter with MSP430FE42x(A)/FE42x2. Texas Instruments Application Report. http://www.ti.com.
  • 18. Panguloori, R., Mishra, P., Kumar, S., 2013. Power Distribution Architectures to Improve System Efficiency of Centralized Medium Scale PV Street Lighting System. Solar Energy, 97, 405–413.
  • 19. Suzdalenko, A., Galkin, I., 2012. Advantages of Enhancement of Street Lighting Infrastructure with DC Link. 13th Biennial Baltic Electronics Conference; 3-5 October Tallinn, Estonia: IEEE. 235–238.
  • 20. Panguloori, R.B., Mishra, P., 2014. Analysis on System Sizing and Secondary Benefits of Centralized PV Street Lighting System. 2014 Power and Energy Systems Conference: Towards Sustainable Energy; 13-15 Mar Bangalore, India: IEEE. 1-6.
  • 21. Wagner, V.E., Balda, J.C., Barnes, T.M., Emenuel, E.M., Ferraro, R.J., 1993. Effects of Harmonics on Equipment. IEEE Transaction on Power Delivery, 8, 672-680.
  • 22.Chou, C.J., Lio, C.W., Lee, J.Y., Lee, K.D., 2000. Optimal Planning of Large PassiveHarmonic-Filters Set at High Voltage Level. IEEE Transaction on Power Systems, 15, 433-441.
  • 23.Rustemli, S., Cengiz M.S., 2015. Active Filter Solutions in Energy Systems, Turkish Journal of Electrical Engineering & Computer Science, 23, 1587-1607.
  • 24. Thirumoorthi, P., Yadaiah, N., 2015. Design of Current Source Hybrid Power Filter for Harmonic Current Compensation, Simulation Model Practice and Theory, 52, 78–91.
  • 25.IEEE Std 519™-2014, IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Power and Energy Society, NY, USA.
  • 26. Karabiber, A., Keles, C., Kaygusuz, A., Alagoz, B.B., Akcin, M., 2016. Power Converters Modeling in Matlab/Simulink for Microgrid Simulations, 4th International Istanbul Smart Grid and Cities Congress; 20-21 April; İstanbul, Turkey: IEEE. 1-5.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ