Gölgede Kurutulmuş Öksürük Otunun (Tussilago farfara L.) Uçucu Bileşiklerinin Taşıyıcı ve Tuzak Yöntemiyle Belirlenmesi

Öksürük otunun yaprakları ve çiçekleri uzun yıllardır başta öksürük gibi boğaz yolu enfeksiyonları olmak üzere, birçok farklı hastalığa karşı tedavi amaçlı kullanılmaktadır. Ayrıca, aroma maddelerince zengin oluşu, öksürük otunun gıda sektöründe aroma verici olarak değerlendirilmesine olanak sağlamıştır. Bu çalışmada, gölgede kurutulmuş Öksürük otu yaprakları ve çiçeklerinin aroma maddeleri purge and trap yöntemiyle izole edilmiş ve GC-MS cihazıyla analiz edilmiştir. Çalışmada elde edilen verilere göre, Öksürük otunda baskın olarak moterpenler ve sesquiterpenlerin oluşturduğu toplamda 30 aroma bileşiği tespit edilmiştir. Bu bileşikler içerisinde Öksürük otunda linalool (% 20.79), karyofilen (%16.36), α-pinen (%9.72), (E)-β-farnesen (%9.07), germakren (%7.78) ve kamfen (%4.48) olduğu belirlenmiştir.

Volatile Compounds of Shade-Dried Tussilago farfara L. Using Purge and Trap Extraction Technique

The leaves and flowers of Coltsfoot have long been used for the therapeutic purposes, especially for respiratory ailments. Coltsfoot is also considered as a natural food flavoring due its aroma-rich property. In the present study, aroma compounds of shade-dried leaves and flowers of coltsfoot were isolated by purge and trap method and analyzed by GC and GC-MS. A total of 30 aroma compounds, including notably monoterpenes and sesquiterpenes were determinated. Results showed that the terpenes, such as; linalool (20.79 %), caryophyllene (16.36 %), α-pinene (9.72%), (E)-β-farnesene (9.07), germacrene (7.78%) and camphene (4.48%), were the most abundant compounds among overall aroma profile.

___

  • Breitmaier E., (2006) Terpenes: Importance, general structure, and biosynthesis. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones, 1-9.
  • Casabianca H., Graff J. B., Faugier V., Fleig F., Grenier C., (1998) Enantiomeric distribution studies of linalool and linalyl acetate. A powerful tool for authenticity control of essential oils. J High Res Chrom, 21(2), 107-112.
  • Chanaj-Kaczmarek J., Wojcińska M. & Matławska I., (2013) Phenolics in the Tussilago farfara leaves. Herba Pol, 59, 35-43.
  • Chang-Tian Li., Yan-Peng Liu, Feng-Cheng He, Yu Li., (2012) In vitro antioxidant activities of Tussilago farfara, a new record species to Changbai Mountain." Chin J Nat Med., 10, 260, 260-262.
  • Dudareva N., Pichersky E., Gershenzon J., (2004) Biochemistry of plant volatiles. Plant Physiol, 135(4), 1893-1902.
  • Ferrer D. B., Venskutonis P. R., Talou T., Zebib B., Ferrer J. M. B., Merah O., (2016) Potential interest of Tussilago farfara (L.) whole plant of Lithuanian and French origin for essential oil extraction. Am J Essent Oils Nat Prod, 4(3), 12-15.
  • Hwangbo C., Lee H. S., Park J., Choe J., Lee J. H., (2009) The anti-inflammatory effect of tussilagone, from Tussilago farfara, is mediated by the induction of heme oxygenase-1 in murine macrophages. Int Immunopharmacol, 9(13), 1578-1584.
  • Judzentiene A., Budiene J., (2011) Volatile oils of flowers and stems of Tussilago farfara L. from Lithuania. J Essent Oil Bear Plant, 14(4), 413-416.
  • Kikuchi M., Suzuki N., (1992) Studies on the constituents of Tussilago farfara L. II. Structures of new sesquiterpenoids isolated from the flower buds, Chem Pharm Bull, 40, 2753-2755.
  • Knee M., Hatfield S. G., (1981) The metabolism of alcohols by apple fruit tissue. J Sci Food Agr, 32(6), 593-600.
  • Kokoska L., Polesny Z., Rada V., Nepovim A., Vanek T., (2002) Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol, 82(1), 51-53.
  • Li Z.-Y., Zhi H.-J., Zhang F.-S., Sun H.-F., Zhang L.-Z., Jia J.-P., Xing J., Qin X.-M., (2013) Metabolomic profiling of the antitussive and expectorant plant Tussilago farfara L. by nuclear magnetic resonance spectroscopy and multivariate data analysis, J Pharm Biomed Anal, 75, 158-164.
  • Liu C., Qin K., Qi Y., Li K., Li Y. , Jia B., (2014) Optimization of ultrasonic extraction of total flavonoids from Tussilago farfara L. using response surface methodology, Int J Pharma Sci, 69, 311-315.
  • Poste L. M., (1991) Laboratory methods for sensory analysis of food (No. 641.1 P6 1991). Canada. Department of Agriculture.
  • Smyrska-Wieleba, N., Wojtanowski, K. K., Mroczek T., (2016) Comparative HILIC/ESI-QTOF-MS and HPTLC studies of pyrrolizidine alkaloids in flowers of Tussilago farfara and roots of Arnebia euchroma. Phytochem Lett.
  • Song K., Lee K. J. , Kim Y. S., (2017) Development of an efficient fractionation method for the preparative separation of sesquiterpenoids from Tussilago farfara by counter-current chromatography, J Chromatogr A, 1489, 107-114.
  • Sonmezdag A. S., Kelebek H., Selli S., (2016) Characterization of aroma-active and phenolic profiles of wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. J Food Sci Technol, 53(4), 1957-1965.
  • Sonmezdag A. S., Kelebek H., Selli S., (2017a) Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique. Foods, 6(2), 10.
  • Sonmezdag A. S., Kelebek H., Selli S., (2017b) Characterization and comparative evaluation of volatile, phenolic and antioxidant properties of pistachio (Pistacia vera L.) hull. J Essent Oil Res, 29(3), 262-270.
  • Wang D., Fang L., Wang X., Qiu J., Huang L., (2011) Preparative separation and purification of sesquiterpenoids from Tussilago farfara L. by high-speed counter-current chromatography, Quím Nova, 34, 804-807.
  • Wu D., Zhang M., Zhang C., Wang Z., (2008) Chromones from the flower buds of Tussilago farfara. Biochem Syst Ecol, 36(3), 219-222.
  • Xu J., Sun X., Kang J., Liu F., Wang P., Ma J., Zhou H., Jin D.-Q., Ohizumi Y., Lee D., (2017) Chemical and biological profiles of Tussilago farfara: Structures, nitric oxide inhibitory activities, and interactions with iNOS protein, J Funct Foods, 32, 37-45.
  • Xue S. Y., Li Z. Y., Zhi H. J., Sun H. F., Zhang L. Z., Guo X. Q., Qin X. M., (2012) Metabolic fingerprinting investigation of Tussilago farfara L. by GC–MS and multivariate data analysis. Biochem Syst Ecol, 41, 6-12.
  • Yaoita Y., Kamazawa H., Kikuchi M., (1999) Structures of new oplopane-type sesquiterpenoids from the flower buds of Tussilago farfara L. Chem Pharm Bull, 47(5), 705-707.
  • Zhao J., Evangelopoulos D., Bhakta S., Gray A. I., Seidel V., (2014) Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J Ethnopharmacol, 155(1), 796-800.