Yakın Kızıl Ötesi (Near-IR) Boyalar ve Bu Boyaların Tıp Alanında Kullanımları

Near-IR (NIR) (yakın kızıl ötesi) floresan boyalarla hedefe yönelik görüntüleme (tanı) ve tedavi imkânı, görüntülerin renk yansıması ve floresan emisyonundan alınan datalar yardımıyla gerçekleştirilir ve özellikle derin yüzeyde bulunan dokuların görüntülenmesinde önemli rol oynar. Bu moleküllerin soğurma ve floresans yaptıkları bölge NIR spektroskopisinin (NIRS) moleküler görüntülemelerdeki seçici alanı olarak tanımlanır (650-850 nm). NIR floresan boyalar genel olarak NIR görüntüleme içeren çalışmalarda kullanılmasına rağmen günümüzde fotodinamik tedavi de kendine yer bulmaktadırlar. Klinik öncesi araştırmalarda, ftalosiyanin, klorin, porfirin, bakterioklorin, siyanin, alexfluore ve çeşitli bodipy serileri vb. NIR floresan boyalar/ajanlar kullanılmaktadır. Bu boyalardan özellikle görüntüleme çalışmalarında en öne çıkanı, diğer boyalara kıyasla ileri fotofiziksel ve kimyasal özelliklere sahip ftalosiyaninlerdir. NIR boyaların kullanılmasının mevcut ve potansiyel avantajlarının yanında bu boyaların toksisite sorunu boyaların klinikte kullanılmasını kısıtlamaktadır. Klinikte kullanılan FDA onaylı tek boya indosiyanin yeşilidir ve ihmal edilebilir yan etkileriyle, kardiyak fonksiyonların kontrolü, karaciğer çıktıları ve retinal anjiyografi gibi klinik alanlarda kullanılmaktadır. Sonuç olarak, birçok önemli sorunlar taşımakla birlikte günümüzde hala güvenli kullanıma uygun olmayan NIR boyaların yakın gelecekte bahsi geçen uygulamalarda uygun olarak kullanılabilecek kimyasal, fotokimyasal ve fotofiziksel özellikleri geliştirilmiş şekilde üretilmesi ihtiyacı kaçınılmazdır. Bununla beraber geliştirilmiş ve/veya geliştirilecek olan NIR floroforların nanopartiküler sistemlerle birleştirilerek ve/veya ajan moleküller ile hedef belirlenerek NIRS ve terapi yönünden daha avantajlı hale getirilmesi gereklidir.

Near-Infrared Dyes and Their Use in Medical Science

Targeted imaging (diagnosis) and therapy using near-infrared (NIR) dyes can be accomplished with the help of the data obtained from fluorescence emission of the fluorophores and play an important role particularly in deep tissue imaging. The area NIR dyes absorb and emit light is defined as NIR spectroscopy (NIRS, 650–850 nm). Although NIR dyes are widely used for imagining purposes, they also find application in photodynamic therapy. In preclinical studies, phthalocyanine (Pc), chlorine, porphyrin, bacteriochlorin, cyanine, Alexa-fluor, and various BODIPY dye series are used as NIR fluorescent dyes/agents. When compared to other dyes, one of the most promising NIR dye is Pc because of their photophysical and chemical properties particularly for the imaging applications. Although NIR dyes have several advantages, their toxicity limits their usage in clinics. Indocyanine green, having negligible side effects, is the only FDA approved NIR dye used in clinics. It is used for controlling of cardiac function, liver output, and retinal angiography. In conclusion, the development of new generation NIR dyes with improved chemical, photophysical, and photochemical properties that are more appropriate for the aforementioned applications is inevitable. Nevertheless, the NIR dyes that have been developed and will be developed should be combined with the nanoparticular systems and/or targeting moieties to make them more advantageous for NIRS and therapy.

___

  • Erdem SS, Nesterova IV, Soper SA, Hammer RP. Solid-phase synthesis of asymmetrically substituted “AB3-Type” Phthalocyanines. J Org Chem 2008; 73: 5003-7. [CrossRef]
  • Erdem SS, Nesterova IV, Soper SA, Hammer RP. Mono-amine function- alized phthalocyanines: microwave-assisted solid-phase synthesis and bioconjugation strategies. J Org Chem 2009; 74: 9280-6. [CrossRef]
  • Umezawa K, Citterio D, and Suzuki K. Water-soluble NIR fluorescent probes based on squaraine and their application for protein labeling. Anal Sci 2008; 24: 213-7. [CrossRef]
  • Meek ST, Nesterov EE, and Swager TM. Near-infrared fluorophores containing benzo [c] heterocycle subunits. Org Lett 2008; 10: 2991-3. [CrossRef]
  • Yang Y, Lowry M, Xu X, Escobedo JO, Sibrian-Vazquez M, Wong L, et al. Seminaphthofluorones are a family of water-soluble, low molecular weight, NIR-emitting fluorophores. Proc Natl Acad Sci USA 2008; 105: 8829-34. [CrossRef]
  • Escobedo JO, Rusin O, Lim S, Strongin SM. NIR dyes for bioimaging appli- cations. Curr Opin Chem Biol 2010: 14: 64-70. [CrossRef]
  • Gallgher WM, O’Shea DF. Synthesis of BF2 Chelates of Tetraarylazadipyr- romethenes and Evidence for Their Photodynamic Therapeutic Behavior. ChemInform 2002; 33: 177-7.
  • Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 2010; 14: 71-9. [CrossRef]
  • Nesterova IV, Erdem SS, Pakhomov S, Hamer RP, Soper SA. Phthalocya- nine dimerization-based molecular beacons using near-IR fluorescence. J Am Chem Soc 2009; 131: 2432-3. [CrossRef]
  • Nesterova IV, Bennett CA, Erdem SS, Hammer RP, Deininger PL, Sopper SA. Near-IR single fluorophore quenching system based on phthalo- cyanine (Pc) aggregation and its application for monitoring inhibitor/ activator action on a therapeutic target: L1-EN. Analyst 2011; 136: 1103-5. [CrossRef]
  • McCarthy JR, Sazonova IY, Erdem SS, Hara T, Thompson BD, Patel P, et al. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine 2012; 7: 1017-28. [CrossRef]
  • Fruie B, Furie BC. Mechanisms of Thrombus Formation. N Engl J Med 2008; 359: 938-49. [CrossRef]
  • Ruggeri ZM. Thrombosis and Haemostasis. Thromb Haemost 1997; 78: 611-6.
  • Rauch U, Osende JI, Fuster V, Badimon JJ, Fayad Z, Chesebro JH. Throm- bus Formation on Atherosclerotic Plaques: Pathogenesis and Clinical Consequences. Ann Intern Med 2001; 134: 224-38. [CrossRef]
  • Svilaas T, Vlaar PJ, van der Horst IC, Diercks GFH, de Smet BJGL, van den Heuvel AFM, et al. Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med 2008; 358: 557-67. [CrossRef]
  • Hara T, Ughi GJ, McCarthy JR, Erdem SS, Mauskapf A, Lyon SC. Intravascu- lar fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur Heart J 2015; pii: ehv677 [Epub ahead of print]. [CrossRef]
  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991; 254: 1178-81. [CrossRef]
  • Tamburino C, Manna AL, Geraci S. Optical coherence tomography for coronary imaging. ESC Council for Cardiology Practice 2010: 9.
  • Bouma BE, Tearney GJ, Yabushita H, Shishkov M, Kauffman CR, DeJoseph GD, et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 2003; 89: 317-20. [CrossRef]
  • Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J 209: 158: 284-93. [CrossRef]
  • Cook S, Wenaweser P, Togni M, Billinger M, Morger C, Seiler C, et al. Incom- plete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 2007; 115: 2426-34. [CrossRef]
  • Stein-Merlob AF, Kessinger CW, Erdem SS, Zelada H, Hilderbrand SA, Lin CP. Blood Accessibility to fibrin in venous thrombosis is thrombus age-dependent and predicts fibrinolytic efficacy: An in vivo fibrin mo- lecular imaging study. Theranostics 2015; 5: 1317-27. [CrossRef]
  • Ughi GJ, Verjans J, Fard AM, Wang H, Osborn E, Hara T, et al. Dual mo- dality intravascular optical coherence tomography (OCT) and near-in- frared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging. Int J Cardiovasc Imaging. 2015; 31: 259-68. [CrossRef]
  • Mehanna EA, Attizzani GF, Kyono H, Hake M, Bezerra HG. Assessment of coronary stent by optical coherence tomography, methodology and definitions. Int J Cardiovasc Imaging. 2011 Feb; 27: 259-69. [CrossRef]
  • Erdem SS, McCarthy JR. Multifunctional Nanoagents for the Detection and Treatment of Thromboses. In: Hunter RJ, Preedy VR, eds. Nanomedicine and the Cardiovascular System. New York: CRC Press; 2011.p. 324-44. [CrossRef]
  • Tung CH, Mahmood U, Bredow S, Weissleder R. In Vivo Imaging of Pro- teolytic Enzyme Activity Using a Novel Molecular Reporter. Cancer Re- search 2000; 60: 4953-58.
  • Kiyose K, Kojima H, Urano Y, Nagano T. Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocy- anine Chromophore. J Am Chem Soc 2006; 128: 6548-9. [CrossRef]
  • Xing B, Khanamiryan A, Rao J. Cell-Permeable Near-Infrared Fluorogenic Substrates for Imaging β-Lactamase Activity. J Am Chem Soc 2005; 127: 4158-9. [CrossRef]
  • Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-Infra- red Fluorescent Nanoparticles as Combined MR/Optical Imaging Probes. Bioconjugate Chem 2002; 13: 554-60. [CrossRef]
  • Konishi M, Erdem SS, Weissleder R, Lichtman AH, McCarthy JR, Libby P. Imaging Granzyme B Activity Assesses Immune-Mediated Myocarditis. Circ Res 2015; 117: 502-12. [CrossRef]
  • Erdem SS, Khan S, Palanisami A, Hasan T. Rapid, low-cost fluorescent as- say of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility. J Biomed Opt 2014; 19: 105007. [CrossRef]
  • Basu U, Khan I, Hussain A, Kondaiah P, Chakravarty AR. Photodynamic Ef- fect in Near-IR Light by a Photocytotoxic Iron(III) Cellular Imaging Agent. Angew Chem Int Ed Engl 2012; 51: 2658-61. [CrossRef]
  • Kostenich G, Orenstein A, Roitman L, Malik Z, Ehrenberg B. In vivo photo- dynamic therapy with the new near-IR absorbing water soluble photo- sensitizer lutetium texaphyrin and a high intensity pulsed light delivery system. J Photochem Photobiol B 1997; 39: 36-42. [CrossRef]
  • Yates NC, Moan J, Western A. Water-soluble metal naphthalocyanines— near-IR photosensitizers: Cellular uptake, toxicity and photosensitizing properties in nhik 3025 human cancer cells. J Photochem Photobiol B 1990; 4: 379-90. [CrossRef]
  • Sasmal PK, Saha S, Majumdar R, Dighe RR, Chakravarty AR. Oxovanadi- um (IV)-based near-IR PDT agents: design to biological evaluation. Chem Commun (Camb) 2009; 13: 1703-5. [CrossRef]
  • Yano S, Hirohara S, Obata M, Hagiya Y, Ogura SI, Ikeda A, et al. Current states and future views in photodynamic therapy. J Photochem Photobi- ol C: Photochemistry Reviews 2011; 12: 46-7. [CrossRef]
  • Avci P, Erdem SS, Hamblin MR. Photodynamic Therapy: One Step Ahead with Self-Assembled Nanoparticles. J Biomed Nanotechnol 2014; 10: 1937-52. [CrossRef]
  • Springa BQ, Abu-Yousifa AO, Palanisamia A, Zhenga X, Rizvia I, Maia Z, et al. Selective treatment and monitoring of disseminated cancer microme- tastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci USA 2013; 111: 933-42. [CrossRef]
  • Psyrri A, Kassar M, Yu Z, Bamias A, Weinberger PM, Markakis S, et al. Effect of epidermal growth factor receptor expression level on survivalin pa- tients with epithelial ovarian cancer. Clin Cancer Res 2005; 11: 8637-43. [CrossRef]
  • Mendelsohn J, Baselga J. Status of epidermal growth factor receptor an- tagonists in the biology and treatment of cancer. J Clin Oncol 2003; 21: 2787-99. [CrossRef]