Involvement of PI3K? in Superoxide Anion Production in Response to IL-8, RANTES, and fMLP in Human Peripheral

Involvement of PI3K? in Superoxide Anion Production in Response to IL-8, RANTES, and fMLP in Human Peripheral

Neutrophils are essential components of the immune system and have a critical role in combating bacterial and fungal infections. A key weapon in the neutrophil armory is the "respiratory burst," which is the generation of reactive oxygen species (ROS) by a multicomponent oxidase complex. It is well established that preexposure of human neutrophils to proinflammatory cytokines and chemokines markedly augments the production of reactive oxygen species (ROS) to subsequent stimuli. In inflammatory reactions, there are complex interactions of protein mediators (cytokines) and mediators derived from lipids. An important event in inflammation is superoxide production, in relation to microbicidal activity as well as tissue damage. A better understanding of phenomena involved in the regulation of NADPH oxidase could help developing novel therapeutic agents for inflammatory diseases involving abnormal neutrophil superoxide. Therefore, stimulating superoxide production by human neutrophils was investigated for this reason and because it sheds a light on intracellular signals that activate this response. Pretreatment of human neutrophils with N-formylmethionyl-leucyl-phenylalanine (fMLP), interleukin-8 (IL-8), and regulated on activation, normal T-cell expressed and secreted (RANTES) markedly augmented the amount of superoxide anion produced, which was inhibited completely (IL-8 and fMLP) or partially (RANTES) by a specific isoform of phosphoinositide 3kinase (PI3K), the PI3K?II inhibitor

___

  • Haslett, C.; Savill, J.S.; Meagher, L. The neutrophil.Curr Opin Immunol. 1989; 2, 10-18.
  • Babior, B.M. NADPH oxidase: an update. Blood. 1999; 93, 1476.
  • Cross, A.R.; Segal, A.W. The NADPH oxidase of profes- sional phagocytes-prototype of the NOX electron transport chain systems. Biochimica et Biophysica Acta. 2004; 1657, 1
  • Arcaro, A.; Wymann, M.P. Wortmannin is a potent phos- phatidylinositol 3-kinase inhibitor: the role of phosphatidyl- inositol 3,4,5-trisphosphate in neutrophil responses. Biochem J. 1993; 296, 297-301.
  • Sasaki, T.; Irie-Sasaki, J.; Jones, R.G.; Oliveira-dos-Santos, A.J.; Stanford, W.L.; Bolon, B.; Wakeham, A.; Itie, A.; Bou- chard, D.; Kozieradzki, I.; Joza, N.; Mak, T.W.; Ohashi, P.S.; Suzuki, A.; Penninger, J.M. Function of PI3Kgamma in thymocyte development, T-cell activation, and neutrophil migration, Science. 2000; 287, 1040-1046.
  • Li, Z.; Jiang, H.; Xie, W.; Zhang, Z.; Smrcka, A.V.; Wu, D. Roles of PLC-beta 2 and -beta 3 and PI3Kgamma in chemoattractant-mediated signal transduction, Science. ; 287, 1046-1049.
  • Hirsch, E.; Katanaev, V.L.; Garlanda, C. Central role for G protein-coupled phosphoinositide 3-kinase gamma in in- flammation. Science. 2000; 287, 1049-1053.
  • Gougerot-Pocidalo, M.A.; el Benna, J.; Elbim, C.; Chollet- Martin, S.; Dang, M.C. Regulation of human neutrophil oxidative burst by pro- and anti-inflammatory cytokines. J soc. Biol. 2002; 196(1), 37-46.
  • Vanhaesebroeck, B.; Leevers, S.J.; Ahmadi, K. Synthesis and function of 3-phosphorylated inositol lipids. Ann Rev Biochem. 2001; 70, 535-602.
  • Fayard, E.; Xue, G.; Parecellier, A.; Bozulic, L.; Hemmings, B.A. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway, Curr Top Microbiol Immunol. 2010; 346, 31-56.
  • Brat, D.J.; Bellail, A.C.; Van Meir, E.G. The role of Inter- leukin- 8 and its receptors in gliomagenesis and tumoral angiogenesis, Neuro-oncol. 2005; 7, 122-33.
  • Holmes, W.E.; Lee, J.; Kuang, W.J.; Rice, G.C.; Wood, W.I. Structure and functional expression of a human inter- leukin-8 receptor, Science. 1991; 253, 1278-80.
  • Murphy, P.M.; Tiffany, H.L. Cloning of a complimentary DNA encoding a functional human interleukin-8 receptor, Science. 1991; 253, 1280-3.
  • Wozniak, A.; Betts, W.H.; Murphy, G.A.; Rokicinski, M. Interleukin-8 primes human neutrophils for enhanced su- peroxide anion production. Immunology Rheumatology. ; 79, 608-615. Tracey, K.J. The inflammatory reflex, Nature. 2002; 420, -859.
  • Carp, H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J. Exp. Med. 1982; 155, -275.
  • Marasco, W.A.; Phan, S.H.; Krutzsch, H.; Showell, H.J.; Feltner, D.E.; Nairn, R.; Becker, E.L.; Ward, P.A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 1984; 259, 5430-5439.
  • Becker, E.L.; Forouhar, F.A.; Grunnet, M.L.; Boulay, F.; Tardif, M.; Bormann, B.J.; Sodia, D.; Ye, R.D.; Woska, J.R.; Murphy, P.M. Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell Tissue Res. 1998; 292, 129-135.
  • Boulay, F.; Tardif, M.; Brouchon, L.; Vignais, P. The hu- man N-formylpeptide receptor: characterization of two cDNA isolates and evidence for a new subfamily of G- protein-coupled receptors. Biochemistry. 1990; 29, 11123
  • Selvatici, R.; Falzarano, S.; Mollica, A.; Spisani, S. Signal transduction pathways triggered by selective formylpeptide analogues in human neutrophils. European Journal of Pharnacology. 2006; 534, 1-11.
  • Kular, G.; Loubtchenkov, M.; Swigart, P.; Whatmore, J.; Ball, A.; Cockcroft, S.; Wetzker, R. Co-operation of phospha- tidylinositol transfer protein with phosphoinositide 3-kinase ? in the formylmethionyl-leucylphenylalanine-dependent production of phosphatidylinositol 3,4,5-trisphosphate in human neutrophils. Biochem. J. 1997; 325, 299-301.
  • Zlotnik, A.; Yoshie, O. Chemokines: a new classification system and their role in immunity, Immunit. 2000; 12, 121-
  • Hebert, C. Chemokines In Diseases, Immunol. 1999; 60, -33.
  • Meurer, R. Formation of eosinophilic and monocytic intradermal inflammatory sites in the dog by injection of human RANTES but not human monocyte chemoattractant protein 1, human macrophage inflammatory protein 1 alpha, or human interleukin 8, J. Exp. Med.1993; 178, 1913-1921.
  • Pan, Z.; Parkyn, L.; Ray, A.; Ray, P. Inducible lung- spesific expression of rantes: Preferential recruitment of neutrophil. Lung Cellular and Molecular Physiology Pub- lished American Journal of Physiology. 2000; 279(4), 658-666
  • Dent, G.; Muñoz, N.M.; Rühlmann, E.; Xiangdong, Z.; Leff, A.R.; Magnussen, H.; Rabe, K.F. Protein Kinase C Inhibition Enhances Platelet-activating Factor-induced Eico- sanoid Production in Human Eosinophils. Am. J. Respir. Cell Mol. Biol. 1998; 18, 136-144, 199.
  • Gwenny, M. F.; Lyndsay, A. D.; Edo, V. Decreased phos- phorylation of protein kinase B and extracellular signal- regulated kinase in neutrophils from patients with myelodysplasia. Blood. 2003; 101, 1172-1180.
  • Kobayashi, S. D.; Voyich, J. M.; Braughton, K. R.; Braughton, K. R.; Whitney, A. R.; Nauseef, W. M.; Malech, H. L.; DeLeo, F. R. Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease, J Immunol. 2004; 172, 636-643.
  • Mishra, R.K.; Scaife, J.E.; Harb, Z.; Gray, B.C.; Djukanovic, R.; Dent, G. Differential dependence of eosino- phil chemotactic responses on phosphoinositide 3-kinase (PI3K). Allergy. 2005; 60, 1204-1207
  • Murdoch, C.; Finn, A. Chemokine receptors and their role in inflammation and infectious diseases. Blood. 2000; (10), 3032-43
  • Burg, N.; Pillinger, M. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol. ; 99(1), 7-17. Watson,A.D.; Nicholson, A.; Pearson, M.R. Use anti- inflammatory and analgesic drug in dogs and cats, Aust Vet J. 1996; 74(3), 203-10.
  • Suire, S.; Coadwell, J.; Ferguson, G. J.; Davidson, K.; Hawkins, P.; Stephens, L. p84, a new G??-activated regula- tory subunit of the type IB phosphoinositide 3-kinase p110?, Vol. Curr Biol. 2005; 15, 566-570.
  • Jones, S.A.; Dewald, B.; Clark-Lewis, I; Baggiolini, M. Chemokine antagonists that discriminate between interleu- kin-8 receptors. Selective blockers of CXCR2, J Biol Chem. ; 272, 16166-16169.
  • Czaplewski, L.G. Aggregation of RANTES is responsible for its nonaggregating, noninflammatory RANTES mutants. J Biol Chem. 1997; 274, 27505-27512. Cribbes, S.; Randle, E; inflammatory properties. Characterization of
  • Bernasconi, S.; Locati, M.; Proudfoot, A.; Wells, T.N.; Mackay, C.; Mantovani, A.; Sozza ni, S.Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC chemokines by IFN-? in human neutro- phils. J Immunol. 1999; 162, 474-479. Power, C.;
  • Bandeira-Melo, C.; Phoofolo, M.; Weller, P. F. Extranuclear lipid bodies, elicited by CCR3-mediated signal- ing pathways, are the sites of chemokine-enhanced leukotri- ene C4 production in eosinophils and basophils. Journal of Biological Chemistry. 2001; 276(25), 22779-22787.
Celal Bayar Üniversitesi Fen Bilimleri Dergisi-Cover
  • ISSN: 1305-130X
  • Başlangıç: 2005
  • Yayıncı: Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü