Ohmik Isıtma Destekli İşlemlerin Gıdalarda Kullanımı ve Kalite Üzerine Etkisi

Gıda sektöründe geleneksel ısıl işlem uygulamalarına alternatif olabilecek daha hızlı ve çevreci üretim teknolojileri araştırılmaktadır. Son zamanlarda üzerinde birçok araştırma yapılan yöntemlerden biri olan, literatürde joule ısıtma, elektriksel direnç ısıtma, elektro iletken ısıtma ve rezistans ısıtma olarak da adlandırılan ohmik ısıtma, gıdaların elektriksel yolla ısıtıldığı bir sistemdir. Geniş bir uygulama alanına sahip olan ohmik ısıtma yönteminde ısı enerjisinin direk ürün içerisinde oluşması birçok avantaj sağlamaktadır. Ohmik ısıtma sisteminin verimliliğini etkileyen başlıca parametreler elektriksel direnç, elektriksel alan kuvveti, partikül boyutu ve konsantrasyondur. Bu derleme çalışmasında, son dönemlerde ohmik ısıtma sistemi ile gerçekleştirilen evaporasyon, ekstraksiyon, çözündürme, enzimatik ve mikrobiyal inaktivasyon uygulamaları incelenerek, ohmik ısıtmanın verimliliği, avantajları ve gıda kalitesi üzerine etkileri değerlendirilmiştir.

Use of Ohmic Heating Assisted Treatments in Foodstuffs and Impact on Quality

In the food sector, faster and ecological production technologies alternative to conventional heat treatment applications are being investigated. Ohmic heating, also called joule heating, electrical resistance heating, electro-conductive heating and resistance heating in the literature, which is one of the most researched method in recent years, is a system where the foods are heated electrically. This method has a wide application area and the formation of heat energy directly in the product during the process provides many advantages. The main parameters affecting the efficiency of the ohmic heating system are electrical resistance, electrical field strength, particle size and concentration. In this study, current ohmic heating assisted evaporation, extraction, dissolution, enzymatic and microbial inactivation applications are reviewed and the effects of ohmic heating on efficiency and food quality have been evaluated.

___

  • Achir, N., Dhuique-Mayer C., Hadjal T., Madani, K., Pain, J.P. and Dornier, M. 2016. Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science and Emerging Technologies, 33: 397-404.
  • Balpetek, D. and Gürbüz, Ü. 2015. Application of Ohmic Heating System in Meat Thawing. Procedia - Social and Behavioral Sciences, 195: 2822-2828.
  • Bozkurt, H. and Icier, F. 2012. Ohmic thawing of frozen beef cuts. Journal of Food Process Engineering, 35: 16-36.
  • Cappato, L.P., Ferreira, M.V.S., Guimaraes, J.T., Portela, J.B., Costa, M.Q., Freitas, A.L.R., Cunha, R.L., Oliveria, C.A.F., Mercali, G.D., Marzack, L.D.F. and Cruz, A.G. 2017. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology, 62: 104-112.
  • Celebi, C. and Icier, F. 2014. Ohmic thawing of frozen ground meat. Bulgarian Chemical Communicationts, 46 (Special issue B): 121-125.
  • Chen, C. 2015. Ohmic Heating: Conventional and Advanced Food Processing Technologies. Ed.: Bhattacharya, S., John Wiley & Sons, New Jersey, US, pp: 673-690.
  • Cho, W., Yi, J.Y. and Chung, M. 2016. Pasteurization of fermented red pepper paste by ohmic heating. Innovative Food Science and Emerging Technologies, 34: 180-186.
  • Cho, W.I., Kim, E.J., Hwang, H.J., Cha, Y.H., Cheon, H.S., Choi, J.B. and Chung, M.S. 2017. Continuous ohmic heating system for the pasteurization of fermented red pepper paste. Innovative Food Science and Emerging Technologies, 42: 190-196.
  • Costa, N. R., Cappato, L.P., Ferreira, M.V.S., Pires, R.P.S., Moraes, J., Esmerino, E.A., Silva, R., Neto, R.P.C., Tavares, M.I.B., Freitas, M.Q., Junior, R.N.S.,. Rodrigues, F.N., Bisaggio, R.C., Cavalcanti, R.N., Racies, R.S.L., Silva, M.C. and Cruz, A.G. 2018. Ohmic Heating: A potential technology for sweet whey processing. Food Research International, 106: 771-779.
  • Çokgezme, Ö.F ve İçier, F. 2016. Dondurulmuş Gıdaların Çözündürülmesinde Alternatif Bir Yöntem: Ohmik Çözündürme. Akademik Gıda. 14(2): 166-171.
  • Çokgezme, Ö.F., Sabancı, S., Çevik, M., Yıldız H. and İçier F. 2017. Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207:1-9.
  • Demirdöven, A. and Baysal, T. 2014. Optimization of ohmic heating applications for pectin methylesterase inactivation in orange juice. Journal of Food Science and Technology, 51: 1817-1826.
  • Farahnaky, A., Azizi R. and Gavahian, M. 2012. Accelerated texture softening of some root vegetables by Ohmic heating. Journal of Food Engineering, 113: 275-280.
  • Gally, T., Rouaud, O., Jury, V., Havet, M., Oge, A. and Le-Bail, A. 2017. Proofing of bread dough assisted by ohmic heating. Innovative Food Science and Emerging Technologies, 39: 55-62.
  • Gavahian, M. and Farahnaky, A. 2018. Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science & Technology, 72: 153-161.
  • Gavahian, M., Farahnaky, A. and Sastry, S. 2016. Ohmic-assisted hydrodistillation: A novel method for ethanol distillation. Food Bioproducts Processing, 98: 44-49.
  • Gavahian, M., Farahnaky, A., Majzoobi, M., Javidnia, K., Saharkhiz, M.J. and Mesbahi, G. 2011. Ohmic-assisted hydrodistillation of essential oils from Zataria multiflora Boiss (Shirazi Thyme). Journal of Food Science and Technology, 46: 2619-2627.
  • Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F. and Farahnaky, A. 2015. Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. Innovative Food Science and Emerging Technologies, 29: 161-169.
  • Gavahian, M., Chu, Y. and Farahnaky, A. 2019. Effects of ohmic and microwave cooking on textural softening and physical properties of rice. Journal of Food Engineering, 243: 114-124. Ghnimi, S., Flach- Malaspina, N., Dresch, M., Delaplace, G. and Maingonnat, J.F. 2008. Design and performance evaluation of an ohmic heating unit for thermal processing of highly viscous liquids. Chemical Engineering Research and Desing, 86: 626-632.
  • Hashemi, S.M.B., Nikmaram, N., Esteghlal, S., Khaneghah, A.M., Niakousari, M., Barba, F.J., Roohinejad, S. and Koubaa, M. 2017. Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innovative Food Science and Emerging Technologies, 41: 172-178.
  • Hradecky, J., Kludska, E., Belkova, B., Wagner M. and Hajslova, J. 2017. Ohmic heating: A promising technology to reduce furan formation in sterilized vegetable and vegetable/meat baby foods. Innovative Food Science and Emerging Technologies, 43: 1-6.
  • İçier, F. 2003. Gıdaların Ohmik Isıtma Yöntemiyle Isıtılmasının Deneysel ve Kuramsal Olarak İncelenmesi. Doktora Tezi. E.Ü. Fen Bilimleri Enstitüsü, Gıda Mühendisliği Ana Bilim Dalı, İzmir.
  • İçier, F., Yıldız, H., Sabancı, S., Çevik M. and Çokgezme, Ö.F. 2017. Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science and Emerging Technologies, 39: 241-246.
  • İçier, F., Çokgezme, Ö.F. and Sabancı, S. 2016. Alternative Thawing Methods for Blanched Potato Cubes: Microwave, Ohmic, and Carbon Fiber Plate Assited Cabin Thawing. Journal of Food Process Engineering, 40: e12403.
  • Jakób, A., Bryjak, J., Wójtowicz, H., Illeová, V., Annus, J. and Polakovič, M. 2010. Inactivation kinetics of food enzymes during ohmic heating. Food Chemistry, 123: 369-376. Jeager, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K.H., Knorr, D., Vogel, R.F., Bandick, N., Kulling, S., Heinz, V. and Steinberg, P. 2016. Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science & Technology, 55: 84-97.
  • Kanjanapongkul, K. 2017. Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192: 1-10.
  • Kaur, N. and Singh, A.K. 2016. Ohmic Heating: Concept and Applications-A Review. Critical Reviews in Food Science and Nutrition, 56(14): 2338-2351.
  • Kim, S. S. and Kang, D.H. 2017. Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli O157:H7, S. typhimurium, L. monocytogenes, and MS-2 bacteriophage in salsa. Food Control, 73: 300-305.
  • Kim, S., Park, S. and Kang, D. 2018. Application of continuous-type pulsed ohmic heating system for inactivation of foodborne pathogens in buffered peptone water and tomato juice. LWT-Food Science and Technology, 93: 316-322.
  • Knirsch, M.C., Santos, C.A., Vicente, A.A.M.O.S. and Penna, T.C.V. 2010. Ohmic heating- a review. Trends in Food Science & Technology, 21: 436-441.
  • Kutlu, N., Yeşilören, G., İşçi, A. and Şakıyan, Ö. 2017. Konvansiyonel ekstraksiyona alternatif: Yeşil teknolojiler. Gıda, 42 (5): 514-526.
  • Liu, L., Llave, Y., Zheng, D., Fukuoka, M. and Sakai, N. 2017. Electrical conductivity and ohmic thawing of frozen tuna at high frequencies. Journal of Food Engineering, 197: 68-77.
  • Llave, Y., Morinaga, K., Fukuoka, M. and Sakai, N. 2018. Characterization of ohmic heating and sous-vide treatment of scallops: Analysis of electrical conductivity and the effect of thermal protein denaturation on quality attribute changes. Innovative Food Science and Emerging Technologies, 50: 112-123.
  • Makroo, H. A., Rastogi, N.K. and Srivastava, B. 2016a. Enzyme inactivation of tomato juice by ohmic heating and its effects on physico-chemical characteristics of concentrated tomato paste. Journal of Food Process Engineering, 40:e12464.
  • Makroo, H.A., Saxena, J., Rastogi, N.K. and Srivastava, B. 2016b. Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: Effects of the treatment on pH, lycopene, total phenolic content, and color of the juice. Journal of Food Processing Preservation, 41:e13271. DOI: 10.1111/jfpp.13271.
  • Mesías, M., Wagner, M., George, S. and Morales, F.J. 2016. Impact of conventional sterilization and ohmic heating on the amino acid profile in vegetable baby foods. Innovative Food Science and Emerging Technologies, 34: 24-28.
  • Min, S. G., Hong, G.P., Chun, J.Y. and Park, S.H. 2016. Pressure Ohmic Thawing: a Feasible Approach for the Rapid Thawing of Frozen Meat and Its Effects on Quality Attributes. Food and Bioprocess Technology, 9: 564-575.
  • Nakilcioğlu, E. and Ötleş, S. 2014. Basınçlı Çözgen Ekstraksiyonu ve Gıda Sanayiindeki Uygulamaları. Akademik Gıda, 12(2): 88-94.
  • Park, I.K. and Kang, D.H. 2013. Effect of Electropermeabilization by Ohmic Heating for Inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes in Buffered Peptone Water and Apple Juice. Applied Environmental Microbiology, 79 (23): 7122-7129.
  • Park, I.K., Ha, J.W. and Kang, D.H. 2017. Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice. BMC Microbiology, 17:117.
  • Parmar, P., Singh, A.K., Meena, G.S., Borad, S. and Raju, P.N. 2018. Application of ohmic heating for concentration of milk. Journal of Food Science and Technology, 55(12): 4956-4963.
  • Pereira, R.N., Rodrigues, R.M., Genisheva, Z., Oliveira, H., Freitas, V., Teixeira, J. A. and Vicente, A.A. 2016. Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT-Food Science and Technology, 74: 493-503.
  • Sabancı, S. and İçier, F. 2017. Applicability of ohmic heating assisted vacuum evaporation for concentration of sour cherry juice. Journal of Food Engineering, 212: 262-270.
  • Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H.A. and Barzegar, M. 2017. Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing, 117: 154-161.
  • Sakr, M. and Liu, S. 2014. A comprehensive review on applications of ohmic heating (OH). Renewable & Sustainable Energy Reviews, 39: 262-269.
  • Saxena, J., Makroo, H.A. and Srivastava, B. 2016. Effect of ohmic heating on Polyphenol Oxidase (PPO) inactivation and color change in sugarcane juice. Journal of Food Process Engineering, 40:e12485.
  • Shiby Varghese, K., Pandey, M.C. and Radhakrishna, K. 2014. Technology, applications and modelling of ohmic heating:a review. Journal of Food Science and Technology. 51(10): 2304-2317.
  • Silva, V.L.M., Santos, L.M.N.B.F. and Silva, A.M.S. 2017. Ohmic Heating: An Emerging Concept in Organic Synthesis. Chemistry European Journal, 23: 7853-7865.
  • Tola, Y.B., Rattan, N.S. and Ramaswamy, H.S. 2014. Electrodes in ohmic heating 11. Ohmic Heating in Food Processing, Ed.: Ramaswamy, H.S., Marcotte, M., Sastry, S., Abdelrahim, K. 16p.
  • Wongsa-Ngasri, P. and Sastry, S.K. 2015. Effect of ohmic heating on tomato peeling. LWT-Food Science and Technology, 61: 269-274.
  • Yildiz-Turp, G., Sengun, I.Y., Kendirci, P. and İçier, F. 2013. Effect of ohmic treatment on quality characteristics of meat: A review. Meat Science, 93: 441-448.
Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1982
  • Yayıncı: Bursa Uludağ Üniversitesi