Bitki Paraziti Nematodlarla Mücadelede Kullanılan Nematisitlerin Etki Mekanizmaları

Bitki paraziti nematodlar, özellikle tropikal ve subtropikal bölgelerde, birçok bitkide zararlara neden olan ve ekonomik kayba yol açan obligat parazitlerdir. Bu zararlıların neden olduğu kayıpları önlemek için kimyasal nematisitler yaygın olarak kullanılmaktadır. Bununla birlikte artan çevre bilinci sonucu birçok nematisit yasaklanmış ya da kullanımı sınırlandırılmıştır. Tarımsal endüstride daha güvenli, daha az toksik ve daha seçici ürünlere yönelik talep artmakta ve son yıllarda yeni nesil nematisitlerin geliştirilmesi konusunda yoğun araştırmalar yapılmaktadır. Bu derlemede kullanım miktarı ve tarımsal üretimdeki önemi gün geçtikçe artan kimyasal nematisitlerin etki mekanizmaları hakkında bilgi verilmesi amaçlanmıştır. IRAC’ın yapmış olduğu sınıflandırma temel alınarak kimyasal nematisitler; Acetylcholinesterase (AChE) inhibitörleri, Glutamat reseptörü klor kanalı üzerinde etkili olanlar, Mitokondriyal kompleks II elektron taşıyıcı inhibitörleri, Acetyl CoA carboxylase inhibitörleri, etkinliği bilinmeyen bileşikler ve etkinliği bilinmeyen çoklu bölge inhibitörleri olmak üzere 6 başlıkta incelenmiştir.

Mode of Action of Nematicides Used in The Management of Plant Parasitic Nematodes

Plant parasitic nematodes are obligate parasitic pests that cause damage to many plants and cause economic loss, especially in tropical and subtropical regions. Chemical nematicides are widely used to prevent losses caused by these pests. However, as a result of increased environmental awareness, many nematicides have been banned or their use has been restricted. In recent years, there is a demand for safer, less toxic and more selective products in the agricultural industry and intensive research has been carried out on the development of new generation nematicides. In this review, it is aimed to give information about the mode of action of chemical nematicides, which increase the amount of use and importance in agricultural production day by day. Chemical nematicides based on the classification made by IRAC have been examined under 6 titles as Acetylcholinesterase (AChE) inhibitors, Glutamate-gated chloride channel (GluCl) allosteric modulators, Mitochondrial complex II electron transport inhibitors, Inhibitors of acetyl CoA carboxylase, Unknown and Presumed multi-site inhibitor.

___

  • Acharya, P. 2020. Alıntı adresi: https://thecounter.org/the-us-still-uses-many-pesticides-banned-in-other-countries/ (Erişim tarihi: 17.04.2021).
  • Anonim, 2021. Alıntı adresi: https://www.resmigazete.gov.tr/eskiler/2004/04/20040408.htm#4. (Erişim tarihi: 17.04.2021).
  • Arnault, I., Fleurance, C., Vey, F., Du Fretay, G. and Auger, J. 2013. Use of Alliaceae residues to control soilborne pathogens. Industrial Crops and Products, 49: 265-272.
  • Avenot, H.F., and Michailides, T.J. 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 29: 643-651.
  • Aydınlı, G., Mennan, S., Devran, Z., Sirca, S. and Urek, G. 2013. First report of root-knot nematode Meloidogyne ethiopica on tomato and cucumber in Turkey. Plant Disease, 97:1262.
  • Aydınlı, G. and Mennan, S. 2016. Identification of root-knot nematodes (Meloidogyne spp.) from greenhouses in the Middle Black Sea Region of Turkey. Turkish Journal of Zoology, 40 (5): 675-685.
  • Barry, K.H., Koutros, S., Lubin, J.H., Coble, J.B., Barone-Adesi, F., Freeman, L.E.B., Sandler, D.P., Hoppin, J.A., Ma, X., Zheng, T. and Alavanja, M.C.R. 2012. Methyl bromide exposure and cancer risk in the agricultural health study. Cancer Causes Control, 23(6): 807-818.
  • Becker, J.O., Ohr, H.D., Grech, N.M., McGiffen M.E. and Sims, J.J. 1998. Evaluation of Methyl iodide as a soil fumigant in container and small field plot studies. Pest Management Science, 52(1): 58-62.
  • Behmand, T., Elekcioğlu, N.Z., Berger, J., Can, C. and Elekcioğlu, İ. H. 2019. Determination of plant parasitic nematodes associated with chickpea in Turkey. Türkiye Entomoloji Dergisi, 43(4): 357-366.
  • Borel, B. 2017. When the pesticides run out. Nature, 543: 302–304.
  • Brück, E., Elbert, A., Fischer, R., Krueger, S., Kühnhold, J., Kleuken, A.M., Nauen, R., Niebes, J.F., Reckman, U., Schnorbach, H.J., Steffens, R. and Waetermeulen, X. 2009. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Protection, 28: 838–844.
  • Chitwood, D.J. 2003. Nematicides: Encyclopedia of Agrochemicals, Ed.: Plimmer, J.R., Ragsdale, N.N. and Gammon, D., John Wiley & Sons, New York, pp: 1104-1115. Christie, J.R. and Cobb, G.S. 1940. The inefficiency of methyl bromide fumigation against the chrysanthemum foliar nematode. Proceedings of the Helminthological Society of Washington, 7: 62.
  • CIRS, 2021. List of banned end restricted pesticide products in China. Türkiye Veri Servisi. http://www.cirsreach.com/news-and-articles/List-of-Banned-and-Restricted-Pesticide-Products-in-China.html. (Erişim tarihi: 17.04.2021).
  • Cui, J.K., Huang, W.K., Peng, H., Lv, Y., Kong, L.-A., Li., H.X., Luo, S.J., Wang, Y. and Peng, D.L. 2017. Efficacy evaluation of seed-coating compounds against cereal cyst nematodes and root lesion nematodes on wheat. Plant Disease, 101: 428-433.
  • Decraemer, W. and Hunt, D.J. 2013. Structure and Classification: Plant Nematology, Ed.: Perry, R.N. and Moens, M., CAB International, Wallingford, Oxfordshire, pp.: 3–39.
  • d’Errico, G., Giacometti, R., Roversi, P.F., d’Errico, F.P. and Woo, S.L. 2017. Mode of action and efficacy of iprodione against the root-knot nematode Meloidogyne incognita. Annals of Applied Biology, 171(3): 506- 510.
  • Desaeger, J., Wram, C. and Zasada, I. 2020. New reduced-risk agricultural nematicides—Rationale and review. Journal of Nematology, 52: 1-16.
  • Devran, Z., Mıstanoğlu, İ. and Özalp. T. 2017. Occurrence of mixed populations of root-knot nematodes in vegetable greenhouses in Turkey, as determinated by PCR screening. Journal of Plant Disease and Protection, 124: 617-630.
  • Duniway, J.M. 2002. Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Journal of Phytopathology, 92: 1337–1343.
  • Ebone, L.A., Kovaleski, M. and Deuner. C.C. 2019. Nematicides: History, mode, and mechanism action. Plant Science Today, 6(2): 91-97.
  • Elling, A.A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology, 103(11): 1092- 1102.
  • EU Pesticide Database 2021. Türkiye Veri Servisi: https://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase (Erişim tarihi: 21.01.2021).
  • Faske, T.R. and Starr, J.L. 2006. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to abamectin. Journal of Nematology, 38(2): 240.
  • Faske, T.R. and Hurd, K. 2015. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Fluopyram. Journal of Nematology, 47(4): 316-321.
  • Faske, T.R. and Brown, K. 2019. Movement of seed- and soil-applied fluopyram in soil columns. Journal of Nematology, 51: 1–8.
  • Feist, E., Kearn, J., Gaihre, Y., O’Connor, V. and Holden-Dye, L. 2020. The distinct profiles of the inhibitory effects of fluensulfone, abamectin, aldicarb and fluopyram on Globodera pallida hatching. Pesticide Biochemistry and Physiology, 165: 104541.
  • Gutbrod, P., Gutbrod, K., Nauen, R., Elashry, A., Siddique, S., Benting, J., Dormann, P. and Grundler, F.M.W. 2018. Inhibition of acetyl-CoA carboxylase by spirotetramat causes lipid depletion and surface coat deficiency in nematodes. bioRxiv, 278093.
  • Göze Özdemir, F.G. 2018. Bitkilerde Kök-ur (Meloidogyne spp.) ve Kist nematodları (Heterodera ve Globodera spp.)'nın kanser oluşum mekanizmaları. Bursa Uludağ Üniv. Ziraat Fak. Derg., 32(1): 165-183.
  • Hajihassani, A., Davis, R.F. and Timper, P. 2019. Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber. Plant Disease, 103(12): 3161-3165.
  • Hartel, P.G. and Haines, B.L. 1991. Effects of potential plant CS Emissions on bacterial growth in the rhizosphere. Soil Biology & Biochemistry, 24(3): 219-224.
  • Hassan, M.A., Pham, T.H., Shi, H. and Zheng, J. 2013. Nematodes threats to global food security. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 63(5): 420-425.
  • Haydock, P.P.J., Woods, S.R., Grove, I.G. and Hare, M.C. 2013. Chemical Control of Nematodes: Plant Nematology, 2nd Edition, Ed.: Perry, R.N. and Moens, M., CABI, Wallingford, Oxfordshire, pp: 459-481.
  • Hawk, T. 2019. The Effects of Seed-Applied Fluopyram on Root Penetration and Development of Meloidogyne incognita on Cotton and Soybean. MS Theses and Dissertations, University of Arkansas, Dept. of Plant pathology.
  • Hwang, K., Eisenberg, M.L., Walters, R.C. and Lipshultz, L.I. 2013. Gonadotoxic effects of DBCP: A historical review and current concepts. The Open Urology & Nephrology Journal, 6: 26-30.
  • IRAC, 2019. IRAC nematicide MoA classification now available. Türkiye Veri Servisi.: https://iraconline.org/irac-nematicide-moa-classification-now-available/.(Erişim tarihi: 02.02.2021).
  • Jones, R.K. 2017. Nematode control and nematicides: developments since 1982 and future trends: Nematology in South Africa: A view from the 21st century, Ed.: Vaughan H.F., SpaullRobin, W., Jones, K., Mieke S., De Waele, D.D., Springer, Cham, pp: 129-150.
  • Kang, A., Kang, J., Kaur, J. and Kaur, N. 2016. Herbicides are escalating severe public health problems but unavoidable for food security. International Journal of Medicine and Pharmaceutical Science, 6: 1–12.
  • Karssen, G., Wesemael, W. and Moens, M. 2013. Root-knot nematodes: Plant Nematology, 2nd Edition, Ed.: Perry, R.N. and Moens, M., CAB International, Wallingford, Oxfordshire, pp: 73-109.
  • Kearn, J., Lilley, C., Urwin, P., Connor, V.O. and Holden-dye, L. 2017. Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida. Pesticide Biochemistry and Physiology, 142: 83–90.
  • Khalil, M.S. 2013. Abamectin and Azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. Journal of Plant Pathology & Microbiology, 4: 174.
  • Lahm, G.P., Desaeger, J., Smith, B.K., Pahutskia, T.F., Rivera, M.A., Meloro, T., Kucharczyka, R., Letta, R.M., Daly, A. and Smith, B. 2017. The discovery of fluazaindolizine: A new product for the control of plant parasitic nematodes. Bioorganic and Medicinal Chemistry Letters, 27: 1572–1575.
  • Lopes-Caitar, V.S., Pinheiro, J.B. and Marcelino-Guimaraes, F.C. 2019. Nematodes in horticulture: An overview. Journal of Horticultural Science and Crop Research, 1(1): 106.
  • McDougall, P. 2019. Evolution of the Crop Protection Industry Since 1960, Pathhead, Scotland, pp: 18. McKenry, M., Kaku, S. and Buzo, T. 2009. Evaluation of Movento (spirotetramat) for efficacy against nematodes infesting perennial crops. Journal of Nematology, 41: 355.
  • Mıstanoğlu, İ. ve Devran, Z. 2015. Kök-ur nematodları ve konukçuları arasındaki ilişkiler. Bursa Uludağ Üniv. Ziraat Fak. Derg., 29(1): 37-46.
  • Mıstanoğlu, İ., Kaşkavalcı, G. and Devran, Z. 2015. Identification of the economically important plant parasitic nematodes in vineyards areas of Izmir and Manisa provinces by morphological and molecular techniques. Türkiye Entomoloji Dergisi, 39(3): 297-309.
  • Mordor Intelligence, 2020. Global Nematicides Market: Growth, Trends and Forecast Türkiye Veri Servisi. https://www.mordorintelligence.com/industry-reports/nematicides-market. (Erişim tarihi: 17.04.2021)
  • Nauen, R., Reckmann, U., Thomzik, J. and Thielert, W. 2008. Biological profile of spirotetramat (Movento)– a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer Crop Science Journal, 61: 245–278.
  • Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockl, S. and Tahna-Maafi, Z. 2011. Current nematode threats to world agriculture: Genomics and Molecular Genetics of Plant Nematode Interactions, Ed.: Jones, J. et al., Springer International Publishing AG, Switzerland, pp: 2223.
  • Ohr, H.D., Sims, J.J., Grech, N.M., Becker, J.O. and Jr. McGıffen, M.E. 1996. Methyl iodide, an ozone safe alternative to methyl bromide as a soil fumigant. Plant Disease, 80: 731-735.
  • Oka, Y. and Saroya, Y. 2019. Effect of fluensulfone and fluopyram on the mobility and infection of second‐stage juveniles of Meloidogyne incognita and M. javanica. Pest Management Science, 75(8): 2095-2106.
  • Oka, Y. 2020. From old-generation to next-generation nematicides. Agronomy, 10(9): 1387.
  • Opperman, C.H. and Chang, S. 1990. Plant-parasitic nematode acetylcholinesterase inhibition by carbamate and organophosphate nematicides. Journal of Nematology, 22(4): 481-488.
  • Osman, H.A., Ameen, H.H., Mohamed, M.M., Gaweesh, S.S., Elgayar, S.H. and Elkelany, U.S. 2017. Integrated control of the nematode Meloidogyne incognita infecting eggplant and effects on associated weeds and crop yield; a field study. Agricultural Engineering International: CIGR Journal, 125–131.
  • Özalp, T., Könül, G., Ayyıldız, O. Tülek, A. and Devran, Z. 2020. First report of root-knot nematode, Meloidogyne arenaria, on lavender in Turkey. Journal of Nematology, 52: 1-3.
  • PAN, International Consolidated List of Banned Pesticides 2021. 5th Edition March, 2021. Türkiye Veri Servisi. http://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (Erişim tarihi: 31.01.2021).
  • Putter, I., Maconnel, J.G., Preiser, F.A., Haidri, A.A., Ristich, S.S. and Dybas, R.A. 1981. Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia, 37: 963–964.
  • Qiao, K., Liu, X., Wang, H., Xia, X., Ji, X. and Wang, K. 2011. Effect of abamectin on root-knot nematodes and tomato yield. Pest Management Science, 68(6): 853-857.
  • Rich, J.R., Dunn, R.A. and Noling, J.W. 2004. Nematicides: Past And Present Uses: Nematology – Advances And Perspectives, Volume II, Nematode Management And Utilization, Ed.: Chen, Z.X., Chen, S.Y. and Dickson, D.W., CAB International, Wallingford, pp: 1179-1200.
  • Salazar-Lopez, N.J., Aldana-Madrid, M.L., Silveira-Gramont, M.I. and Aguiar, J.L. 2016. Spirotetramat-An Alternative for The Control of Parasitic Sucking Insects and Fate in The Environment: Insecticide Resistance, Ed.: Tradan, S., Intech, Croatia, pp. 41-54.
  • Sánchez-Bayo, F., Tennekes, H.A. and Goka, K. 2013. Impact of Systemic Insecticides on Organisms and Ecosystems: Insecticides-Development of Safer and More Effective Technologies, Ed.: Stanislav, T., InTech, Croatia, pp: 365–414.
  • Sikora, R.A. and Hartwig, J. 1991. Mode-of-action of the carbamate nematicides cloethocarb, aldicarb and carbofuran on Heterodera schachtii 2. systemic activity. Revue de Nematologie, 14(4): 531-536.
  • Singh, S., Singh, B. and Singh, A.P. 2015. Nematodes: A threat to sustainability of agriculture. Procedia Environmental Sciences, 29: 215-216.
  • Smiley, R.W., Marshall, J.M. and Yan, G.P. 2011. Effect of foliarly applied spirotetramat on reproduction of Heterodera avenae on wheat roots. Plant Disease, 95: 983-989.
  • Sparks, T.C., Crossthwaite, A.J., Nauen, R., Banba, S., Cordova, D., Earley, F. and Wessels, F.J. 2020. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification-a tool for resistance management. Pesticide Biochemistry and Physiology, 167: 104587.
  • Thoden, T., Pardavella, I.V. and Tzortzakakis, E. 2019. In vitro sensitivity of different populations of Meloidogyne javanica and M. incognita to the nematicides Salibro and Vydate. Nematology, 21: 889–893.
  • TOB, 2021. Yasaklanan bitki koruma ürünleri aktif madde listesi. Türkiye Veri Servisi. https://www.tarimorman.gov.tr/Konu/934/Yasaklanan-Bitki-Koruma-Urunleri-Aktif-Madde-Listesi. (Erişim tarihi: 17.04.2021)
  • TUIK, 2019. Türkiye İstatistik Kurumu, Tarımsal ilaç kullanım verileri. Türkiye Veri servisi. https://tuikweb.tuik.gov.tr (Erişim tarihi:17.04.2021).
  • Umetsu, N. and Shirai, Y. 2020. Development of novel pesticides in the 21st century. Journal of Pesticide Science, 45(2): 54-74.
  • UNEP, 1995. Montreal Protocol on substances that deplete the ozone layer. 1994 Report of the Methyl Bromide Technical Options Committee. 1995 Assessment. Nairobi, Kenya, p: 304.
  • Uysal, G., Söğüt, M.A. and Elekçioğlu, İ.H. 2017. Identification and distribution of root-knot nematode species (Meloidogyne spp.) in vegetable growing areas of Lakes Region in Turkey. Türkiye Entomoloji Dergisi, 41(1): 105-122.
  • Waisen, P., Wang, K.H. and Sipes, B.S. 2019. Effect of spirotetramat (Movento®) on hatch, penetration, and reproduction of Rotylenchulus reniformis. Nematropica, 49: 194-199.
  • Wolstenholme, A.J. 2012. Glutamate-gated chloride channels. The Journal of Biological Chemistry, 287(47): 40232-40238.
  • Yağcı, M. ve Kaşkavalcı, G. 2018. Ege bölgesi şeftali alanlarında görülen kök-ur nematodu türleri (Meloidogyne spp.)’nin belirlenmesi ve yayılışının saptanması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 55(3): 305-310.
  • Zasada, I.A., Halbrendt, J.M., Kokalis-Burelle, N., LaMondia, J., McKenry, M.V. and Noling, J.W. 2010. Managing nematodes without methyl bromide. Annual review of phytopathology, 48: 311-328.
  • Zhang, D., Ji, X., Meng, Z., Qi, W. and Qiao, K. 2019. Effects of fumigation with 1, 3-dichloropropene on soil enzyme activities and microbial communities in continuous-cropping soil. Ecotoxicology and environmental safety, 169: 730-736.
  • Zhang, D.X., Liu, G., Jing, T.F., Luo, J., Wei, G., Mu, W. and Liu, F. 2020. Lignin-modified electronegative epoxy resin nanocarriers effectively deliver pesticides against plant Root-knot nematodes (Meloidogyne incognita). Journal of Agricultural and Food Chemistry, 68(47): 13562-13572