Süper-Şekilli Kusurlu Taban Yapıları ile Ultra Geniş Bant Mikroşerit Filtre Tasarımı

Süperformül yaklaşımıyla tasarlanan taban iletkeni kusurlu yapılar uygulanarak ultra geniş bantlı (UWB) mikroşerit filtre tasarımları gerçekleştirilmiştir. Filtre yapısı, 8 GHz merkez frekanslı 5. dereceden Chebyshev tepkili ultra geniş band geçiren filtre karakteristiklerine uygun olarak AWR programında tasarlanmıştır. Hedeflenen özelliklere uygun olan model HFSS programına aktarılıp FR4 ve RO3035 gibi farklı laminantların kullanımının filtre özelliklerine etkisi hesaplanmıştır. Filtrenin taban iletkenine farklı sayılarda süperformül yaklaşımıyla oluşturulan yapılar açılarak etkileri incelenmiştir. Burada, Johan Gielis tarafından önerilen süperformüldeki denklem parametreleri MATLAB programı kullanılarak açılan kusurların yapıları oluşturulmuştur. Tasarlanan filtrelerin PCB üretimi yapılmış olup Anritsu spektrum analizör cihazı ile deneysel ölçümleri alınmıştır. Elektromanyetik simülasyon programlarından elde edilen sonuçlar ile üretilen filtrelerin deneysel ölçüm sonuçları kıyaslandığında, sonuçların birbirleri ile uyumlu olduğu görülmektedir.

Ultra-Wideband Microstrip Filter Design with Super-Shaped Defected Ground Structures

Ultra-wideband (UWB) microstrip filter design has been proposed by applying defected ground conductorstructures designed with the superformula approach. Simultaneously, the effects of the materials used in thedesigns on the filter properties have been examined. Once the filter characteristics have been determined, the filterdesign has carried out in the AWR program. The filter structure has been designed based on an 8 GHz centerfrequency fifth-order Chebyshev response ultra-wide bandpass filter. The filter model designed in AWR hastransferred to the HFSS program, and the effect of FR4 and RO3035 materials on filter characteristics have beeninvestigated. The various number of defects, each shaped with superformula, is opened to the base conductor, andtheir effects are observed. The parameters in the superformula proposed by Johan Gielis have been calculated inthe MATLAB program. PCB productions of the designed filters have been made, and experimental measurementshave been taken with the Anritsu spectrum analyzer. When the results obtained from electromagnetic simulationprograms have compared with the experimental measurement results of the filters produced, it has been seen thatthe results are consistent with each other.

___

  • [1] Levy R. 1970. A New Class of Distributed Prototype Filters with Applications to Mixed Lumped/Distributed Component Design. IEEE Transactions on Microwave Theory and Techniques, 18 (12): 1064-1071.
  • [2] Levy R. 1972. Synthesis of Mixed Lumped and Distributed Impedance Transforming Filters. IEEE Transactions on Microwave Theory and Techniques, 20 (3): 223-233.
  • [3] Menzel W., Rahman Tito M.S., Zhu L. 2005. Low-loss ultra-wideband (UWB) filters using suspended stripline. Asia-Pacific Microwave Conference Proceedings, 4-7 December, Suzhou, 4. doi: 10.1109/APMC.2005.1606747.
  • [4] Shaman H., Hong J., 2006. An Optimum Ultra-Wideband (UWB) Bandpass Filter with Spurious Response Suppression. IEEE Annual Wireless and Microwave Technology Conference, 4-5 December, Florida, 1-5. doi: 10.1109/WAMICON.2006.351902.
  • [5] Gong H., Nie H., Chen Z. 2007. Performance of UWB Systems with Suboptimal Receivers under IEEE 802.15.4a Industrial Environments. Fifth Annual Conference on Communication Networks and Services Research (CNSR '07), 14-15 May, Fredericton, 283-286. doi: 10.1109/CNSR.2007.51.
  • [6] Tripta Ghazali A. 2016. Broadside -coupled UWB filter for indoor communication systems. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 23-25 March, Chennai, India, 2417-2420. doi: 10.1109/WiSPNET.2016.7566576.
  • [7] He X., Xu J. 2016. A filtering antenna with 3rd-order Chebyshev response. IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 20-22 July, Chengdu, 1-4. doi: 10.1109/IMWSAMP.2016.7588389.
  • [8] Gielis J.A. 2003. Generic Geometric Transformation That Unifies a Wide Range of Natural and Abstract Shapes. American Journal of Botany, 90 (3): 333-338.
  • [9] Bia P., Caratelli D., Mescia L., Gielis J. 2013. Electromagnetic characterization of supershaped lens antennas for high-frequency applications. 43rd European Microwave Conference, 6-10 January, Nuremberg, 1679-1682. doi: 10.23919/EuMC.2013.6686998.
  • [10] Nase S., Dib N. 2017. Design and Analysis of Super-Formula-Based UWB Monopole Antenna and its MIMO Configuration. Wireless Personal Communications, 94: 3389-3401.
  • [11] Omar A., Rashad M., Al-Mulla M., Attia H., Naser S., Dib N., Shubair R. 2016. Compact design of UWB CPW-fed-patch antenna using the superformula. 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), 6-8 December, Ras Al Khaimah, 1-4. doi: 10.1109/ICEDSA.2016.7818482.
  • [12] Khajevandi S., Oraizi H., Poordararee M. 2018. Design of Planar Dual-Bandstop FSS Using Square-Loop-Enclosing Superformula Curves. IEEE Antennas and Wireless Propagation Letters, 17 (5): 731-734.
  • [13] Samaras K.A., Maximidis R.T., Koutinos A., Ioannopoulos G.A., Caratelli D., Sahalos J.N., Kyriacou G.A. 2018. Characteristic mode analysis of drop-like supershaped patch antenna. 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), 7-9 May, Thessaloniki, 1-4. doi: 10.1109/MOCAST.2018.8376655.