Proton Değişim Membran Yakıt Hücresinin (PDMYH) Hücre Bazlı Deneysel Analizi

Bu çalışma, sodyum borhidrür (NaBH4) kullanılan bir proton değiştirme membranı (PEM) yakıt pilinin hücre bazlı deneysel analizi üzerine odaklanmıştır. NaBH4, saf su ve katalizör olarak kullanılan sitrik asit (C6H8O7) sabit yükte tutularak iki farklı sıcaklıkta 10 hücreli PEM yakıt pilinin hücre bazlı gerilim değerlerindeki değişim değerlendirilmiştir. 3 g NaBH4, H2O/NaBH4: 2 mol/mol (x=0) ve C6H8O7 katalizörü/NaBH4: 0.1 g/g ile 250 cm3 reaktör hacminde hidrojen üretimi gerçekleştirilmiştir. Su sıcaklığı 40 ºC’den 60 ºC’ye çıkarıldığında toplam gerilim değeri % 6.1 oranında artmıştır. 40 °C deneyinde ortalama gerilim değerleri 0.53 V ila 0.78 V arasında değişirken 60 °C deneyinde ise ortalama değerler 0.61 V ila 0.79 V arasında değişmiştir.

Cell-Based Experimental Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC)

This study is focused on cell-based experimental analysis of Proton Exchange Membrane Fuel Cell (PEMFC) withsodium borohydride (NaBH4). The change in cell-based voltage values of 10-cell PEM fuel cell at two differenttemperatures was evaluated by keeping at constant load NaBH4, pure water and citric acid (C6H8O7) which is usedas a catalyzer. 3 g NaBH4, H2O/NaBH4: 2 mol/mol (x=0), and C6H8O7 catalyzer/NaBH4: 0.1 g/g and 250 cm3 ofreactor volume production were realized. When the water temperature was raised to 60 ºC from 40 ºC, total voltagevalue increased by 6.1%. While, in the experiment of 40 ºC, the interchange in voltage values were between 0.53V and 0.78 V, the mean values in the experiment of 60 ºC were between 0.61 V and 0.79 V.

___

  • [1] Ma J., Su Y., Zhou Y., Zhang Z. 2003. Simulation and prediction on the performance of a vehicle’s hydrogen engine. Int. J. Hydrogen Energy, 28: 77-83.
  • [2] Williams M.V., Russell Kunz H., Fenton J.M. 2005. Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells. Electrochem. Soc., 152 (3): A635-A644.
  • [3] Xu H., Russell Kunz H.R., Fenton J.M. 2007. Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 C and reduced relative humidity. Electrochim Acta, 52: 3525–33.
  • [4] Das V., Padmanaban S., Venkitusamy K., Selvamuthukumaran R., Blaabjerg F., Siano P. 2017. Recent advances and challenges of fuel cell based power system architectures and control–A review. Renewable and Sustainable Energy Review, 73: 10-18.
  • [5] Zoulias EI., Lymberopoulos N. 2007. Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems. Renewable Energy, 32 (4): 680–696.
  • [6] Dursun E., Kilic O. 2012. Comparative evaluation of different power management strategies of a stand-alone PV/Wind/PEMFC hybrid power system. Electrical Power and Energy Syst, 34 (1): 81–89.
  • [7] Bezmalinović D., Barbir F., Tolj I. 2013. Techno-economic analysis of PEM fuel cells role in photovoltaic-based systems for the remote base stations. Int. J. Hydrogen Energy, 38 (1): 417- 425.
  • [8] Hosseini M., Dincer I., Rosen M.A. 2013. Hybrid solar-fuel cell combined heat and power systems for residential applications: Energy and exergy analyses. J. Power Sources, 221: 372- 380.
  • [9] Schlesinger H.I., Brown H.C., Finholt A. E., Gilbreath J.R., Hoekstra H.R., Hyde E.K. 1953. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J. Am. Chem. Soc., 1: 215-219.
  • [10] Wu Y., Mohring R.M. 2003. Sodium borohydride for hydrogen storage. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem., 48: 940.
  • [11] Hua D., Hanxi Y., Xinping A., Chuansin C. 2003. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. Int. J. Hydrogen Energy, 28: 1095- 1100.
  • [12] Richardson B.S., Birdwell J.F., Pin F.G., Jansen J.F., Lind R.F. 2005. Sodium borohydride based hybrid power system. J. Power Sources, 145: 21-29.
  • [13] İnger E., Özdemir Z., Yaşar İ., Tırıs M., Bahar T., San F.G.B. 2006. Sodyum borhidrür üretimi ve doğrudan sodyum borhidrürlü yakıt pili üretimi ve entegrasyonu, Türkiye 10. Enerji Kongresi, 27-30 Kasım, İstanbul.
  • [14] Kojima Y., Suzuki K., Kawai Y. 2006. Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2. J. Power Sources, 155: 325-328.
  • [15] Wee J.H., Lee K.Y., Kim S.H. 2006. Sodium borohydride as the hydrogen supplier for proton exchange membrane fuelcell systems. Fuel Processing Technology, 87: 811-819.
  • [16] Taner T. 2018. Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy, 143: 284-294.
  • [17] Wilberforce T., El-Hassan Z., Khatib F.N., Al Makky A., Mooney J., Barouaji A., Carton JG., Olabi AG. 2017. Development of Bi-polar plate design of PEM fuel cell using CFD techniques. Int. J. Hydrogen Energy, 42: 25663-25685.
  • [18] Wilberforce T., El-Hassan Z., Khatib F.N., Al Makky A., Mooney J., Barouaji A., Carton J.G., Thompson A., Olabi A.G. 2017. Modelling and simulation of proton exchange membrane fuel cell with serpentine bipolar plate using MATLAB. Int. J. Hydrogen Energy, 42: 25639-25662.
  • [19] Taner T. 2015. Alternative energy of the future: A technical note of PEM fuel cell water management. J. Fundamentals of Renewable Energy and Applications, 5(3): 1-4.
  • [20] Taner T., Naqvi S.A.H., Özkaymak M. 2017. Techno-economic analysis of a more efficient hydrogen generation system prototype: A case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates. Fuel Cell, 1: 19-26.
  • [21] Taner T. 2017. The micro-scale modeling by experimental study in PEM fuel cell, J. Thermal Engineering. Yıldız Technical University Press, 3(6): 1515-1526.
  • [22] Yılmaz A., Şevik S. 2017. Experimental analysis of electricity generation with sodium borohydride (NaBH4) assisted hydrogen/air PEM fuel cell. Batman University J. Life Sciences, 7(2/2): 216-227.
  • [23] Marrero-Alfonso E.Y., Gray J.R., Davis T.A., Matthews M.A. 2007. Minimizing water utilization in hydrolysis of sodium borohydride, the role of sodium metaborate hydrates. Int. J. Hydrogen Energy, 32: 4723-4730.
  • [24] Sammes N. 2005. Fuel cell technology–reaching towards commercialization. British Library Cataloguing in Publication Data, UK.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü