Mısır Fidelerinin Büyüme ve Gelişmesi Üzerine Progesteron ve Mifepristonun Etkilerinin Kıyaslamalı Olarak Değerlendirilmesi

Memeli cinsiyet hormonları arasında yer alan ve bitkilerde de doğal olarak bulunan progesteron, çimlenmedençiçeklenmeye kadar tüm bitki gelişim safhaları üzerine önemli uyarıcı etkilere sahiptir. Ancak bu hormonun etkimekanizması halen tam olarak aydınlatılamadığı gibi, sebep olduğu etkilerin de doğrudan kendi özelliğinden mikaynaklandığı yoksa farklı yolaklar üzerinden dolaylı olarak mı gerçekleştiği konusu da belirsizliğinikorumaktadır. Bu amaçla, mevcut araştırmada progesteron reseptör bağlanma inhibitörü olan mifepristonkullanılmak suretiyle, progesteronun etkisinin doğrudan mı yoksa dolaylı mı olduğu belirlenmeye çalışılmıştır. 9günlük mısır fideleri 4 gruba ayrılarak yapraklarına saf su (kontrol grubu), progesteron (10-8 mol.L-1), mifepriston(5.8×10-5 mmol.L-1) ve progesteron + mifepriston) solüsyonları püskürtülmüş ve tüm gruplar üç gün sonra hasatedilerek morfolojik, fizyolojik ve biyokimyasal analizler yapılmıştır. Progesteron uygulaması bitkilerin kök veyaprak uzunlukları, total klorofil, total protein, total karbohidrat, nispi su ve kuru madde içerikleri ile yaprak yüzeyalanı ve Ribuloz-1,5-bisfosfat karboksilaz/oksijenaz (RuBisCo) aktivitelerinde kontrol bitkilerine kıyasla önemliartışlara sebep olurken, mifepriston uygulanan bitkilerde bu parametrelerin tamamında belirgin düşüşlerkaydedildi. Öte yandan, progesteron ile birlikte mifepriston uygulanan bitkilerde ise kontrol bitkilerine kıyaslamifepriston kaynaklı inhibisyonların önemli oranda azaldığı belirlendi. Tüm bu bulgular, mifepristonuygulamasının progesteronun bağlanmasını önlemek suretiyle progesteron bağlantılı metabolik faaliyetleringerçekleşmesine ket vurarak mısır fidelerinin büyüme ve gelişmesini inhibe ettiğini ve böylelikle progesteronunbitki metabolizması üzerine doğrudan etkiye sahip olduğunu açıkça ortaya koymaktadır.

Comparative Evaluation of the Effect of Progesterone and Mifepristone on Growth and Development of Maize Seedlings

Progesterone, which is among mammalian sex hormones and is also naturally present in plants, has important stimulative effects on all developmental stages of plants, starting from germination to flowering. However, as the effect mechanism of this hormone is still not fully understood, it is still not known whether its effects originate directly or indirectly from different pathways. For this purpose, the present study tried to determine whether the effect of progesterone was direct or indirect by using mifepristone, a progesterone receptor binding inhibitor. Nineday-old maize seedlings were divided into four groups and the leaves were sprayed with the following solutions: distilled water (control group), progesterone (10-8 mol.L-1 ), mifepristone (5.8×10-5 mmol.L-1 ), and progesterone plus mifepristone. All groups were harvested after 3 days to perform morphological, pysiological and biochemical analysis. In comparison to control seedlings, while progesterone application resulted in significant increases in lengths of root and leaves, contents of total chlorophyll, total protein, relative water, and dry matter, leaf surface area, and Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) activity, marked decreases in all these parameters were recorded at mifepristone-applied seedlings. On the other hand, in mifepristone-applied seedlings along with progesterone it was determined that mifepristone-induced inhibitions declined significantly in comparison to control seedlings. All these findings clearly demonstrate that mifepristone inhibited the growth and development of maize seedlings via disruption of progesterone-associated metabolic activities through the prevention of the binding of progesterone, and thus these data proved that progesterone has a direct effect on plant metabolism.

___

  • [1] Janeczko A., Barna B., Gullner G., Skoczowski A., Dubert F. 2005. Specific Physiological Activity of 24-Epibrassinolide Injected into Apoplast of Spring Rape Tissues Prior to Cold Treatment, Acta Physiologiae Plantarum, 27: 52-52.
  • [2] Janeczko A. 2012. The Presence and Activity of Progesterone in the Plant Kingdom, Steroids, 77: 169-173.
  • [3] Janeczko A., Oklestkova J., Novak O., Sniegowska-Swierk K., Snaczke Z., Pociecha E. 2015. Disturbances in Production of Progesterone and Their Implications in Plant Studies, Steroids, 96: 153-163.
  • [4] Erdal S., Dumlupinar R. 2011. Mammalian Sex Hormones Stimulate Antioxidant System and Enhance Growth of Chickpea Plants, Acta Physiologia Plantarum, 33: 1011-1017.
  • [5] Erdal S. 2012. Alleviation of Salt Stress in Wheat Seedlings by Mammalian Sex Hormones, Journal of the Science of Food and Agriculture, 92: 1411-1416.
  • [6] Erdal S. 2012. Exogenous Mammalian Sex Hormones Mitigate Inhibition in Growth by Enhancing Antioxidant Activity and Synthesis Reactions in Germinating Maize Seeds Under Salt Stress, Journal of the Science of Food and Agriculture, 92: 839-843.
  • [7] Chaoui A., El Ferjani E. 2014. Heavy Metal-induced Oxidative Damage is Reduced by betaEstradiol Application in Lentil Seedlings, Plant Growth Regulation, 74: 1-9.
  • [8] Janeczko A., Oklest'kova J., Siwek A., Dziurka M., Pociecha E., Kocurek M., Novak O. 2013. Endogenous Progesterone and its Cellular Binding Sites in Wheat Exposed to Drought Stress, Journal of Steroid Biochemistry, 138: 384-394.
  • [9] Hu C., Hermann G., Pen-Mouratov S., Shore L., Steinberger Y. 2011. Mammalian Steroid Hormones can Reduce Abundance and Affect the Sex Ratio in a Soil Nematode Community, Agriculture, Ecosystems & Environment, 142: 275-279.
  • [10] Agarwal M.K. 1993. Receptors for Mammalian Steroid-Hormones in Microbes and Plants, Febs Letters, 322: 207-210.
  • [11] Dumlupinar R., Genisel M., Erdal S., Korkut T., Taspinar M.S., Taskin M. 2011. Effects of Progesterone, beta-Estradiol, and Androsterone on the Changes of Inorganic Element Content in Barley Leaves, Biological Trace Element Research, 143: 1740-1745.
  • [12] Erdal S., Genisel M. 2016. The Property of Progesterone to Mitigate Cold Stress in Maize is Linked to a Modulation of the Mitochondrial Respiratory Pathway, Theoretical and Experimental Plant Physiology, 28: 385-393.
  • [13] Erdal S., Genisel M., Turk H., Gorcek Z. 2012. Effects of Progesterone Application on Antioxidant Enzyme Activities and K+ /Na+ Ratio in Bean Seeds Exposed to Salt Stress, Toxicology and Industrial Health, 28: 942-946.
  • [14] Simersky R., Novak O., Morris D.A., Pouzar V., Strnad M. 2009. Identification and Quantification of Several Mammalian Steroid Hormones in Plants by UPLC-MS/MS, Journal of Plant Growth Regulation, 28: 125-136.
  • [15] Su X.Y., Wu S., Yang L., Xue R.L., Li H., Wang Y.X., Zhao H.J. 2014. Exogenous Progesterone Alleviates Heat and High Light Stress-induced Inactivation of Photosystem II in Wheat by Enhancing Antioxidant Defense and D1 Protein Stability, Plant Growth Regulation, 74: 311-318.
  • [16] Jumrani K., Bhatia V.S. 2018. Impact of Combined Stress of High Temperature and Water Deficit on Growth and Seed Yield of Soybean, Physiology and Molecular Biology of Plants, 24: 37-50.
  • [17] Barrs H.D., Weatherley P.E. 1962. A Re-Examination of the Relative Turgidity Techniques for Estimating Water Deficits in Leaves, Australian Journal of Biological Sciences, 15: 413-428.
  • [18] Serdar U., Demirsoy H. 2006. Non-destructive Leaf Area Estimation in Chestnut, Scientia Horticulturae , 108 (2): 227-230.
  • [19] Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. 1985. Measurement of Protein Using Bicinchoninic Acid, Analytical Biochemistry, 150: 76-85.
  • [20] Dische Z. 1947. New Characteristic Color Reactions of Carbohydrates with SH Compounds in H2SO4, Federation Proceedings, 6: 248.
  • [21] Witham F.H., Blaydes B.F., Devlin R.M. 1971. Experiments in Plant Physiology, Van Nostrand Reinhold, New York, USA,167-200.
  • [22] Sharkey T.D., Savitch L.V., Butz N.D. 1991. Photometric-Method for Routine Determination of Kcat and Carbamylation of Rubisco, Photosynthesis Research, 28: 41-48.
  • [23] Janeczko A. 2000. Influence of Selected Steroids on Plant Physiological Processes – Especially Flowering Induction, Agricultural University, Phd thesis, Krakow, Poland.
  • [24] Erdal S., Dumlupinar R. 2010. Progesterone and beta-Estradiol Stimulate Seed Germination in Chickpea by Causing Important Changes in Biochemical Parameters, Zeitschrift für Naturforschung C, 65: 239-244.
  • [25] Erdal S., Dumlupinar R., Cakmak T., Genisel M. 2010. Mammalian Sex Hormones Influence Germination Velocity and Enzyme Activities in Germinating Maize Seeds, Fresenius Environmental Bulletin, 19: 1458-1465.
  • [26] Erdal S. 2009. Effects of Mammalian Sex Hormones on Antioxidant Enzyme Activities, H2O2 Content and Lipid Peroxidation in Germinating Bean Seeds, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40: 79-85.
  • [27] Yang Y., Wei X., Lu J., You J., Wang W., Shi R. 2010. Lead-induced Phytotoxicity Mechanism Involved in Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.), Ecotoxicology and Environmental Safety, 73: 1982-1987.
  • [28] Genisel M., Turk H., Erdal S., Demir Y., Genc E., Terzi I. 2015. Ameliorative Role of betaEstradiol Against Lead-induced Oxidative Stress and Genotoxic Damage in Germinating Wheat Seedlings, Turkish Journal of Botany, 39: 1052-1060.
  • [29] Kopcewicz J. 1969. Influence of Estrone on Growth and Endogenous Giberellins Content in Dwarf Pea, Bulletin de L'Academie Polonaise des Sciences, 17 (11): 727-731.
  • [30] Dogra R., Thukral A.K. 1994. Effect of Steroid and Plant Hormones on Growth of Maize cv. Canga 5, Crops Research, 2: 42-47.
  • [31] Genisel M., Turk H., Erdal S. 2013. Exogenous Progesterone Application Protects Chickpea Seedlings Against Chilling-induced Oxidative Stress, Acta Physiology Plantarum, 35: 241-251.
  • [32] Dogra R., Thukral A.K. 1991. Effect of Steroids on Some Growth and Biochemical Parameters of Triticum aestivum L. During Germination, Crops Research, 8: 611-620.
  • [33] Kaur G., Kumar S., Thakur P., Malik J.A., Bhandhari K., Sharma K.D., Nayyar H. 2011. Involvement of Proline in Response of Chickpea (Cicer arietinum L.) to Chilling Stress at Reproductive Stage, Scientia Horticulturae, 128: 174-181.
  • [34] Dogra R., Thukral A.K. 1989. Effect of Steroid and Plant Hormones on Growth of Maize cv. Ganga 5, Crops Research, 2: 42-48.
  • [35] Omalley B.W., Means A.R.1974. Female Steroid-Hormones and Target-Cell Nuclei, Science, 183: 610-620.
  • [36 Gioelli F. 1942. Die Wirkung des Follikelhormons (Ostradiol, Dihydrofollikulin)auf Kulturen Pflanzlicher Gewebe in vitro, Archives of Biological Sciences, 28: 311.
  • [37] Swamy K.N., Rao S.S.R. 2009. Effect of 24-Epibrassinolide on Growth, Photosynthesis, and Essential Oil Content of Pelargonium graveolens (L.) Herit, Russian Journal of Plant Physiology, 56: 616-620.
  • [38] Yang X.H., Xu Z.H., Xue H.W. 2005. Arabidopsis Membrane Steroid Binding Protein 1 is Involved in Inhibition of Cell Elongation, Plant Cell, 17: 116-131.
  • [39] Mori D., Ogino N., Yonezawa T. 2011. Kawaminami M., Kurusu S., Anti-ovulatory Effects of RU486 and Trilostane Involve Impaired Cyclooxygenase-2 Expression and Mitotic Activity of Follicular Granulosa Cells in Rats, Prostaglandins Other Lipid Mediators, 94: 118-123.
  • [40] Rung E., Friberg P.A., Shao R., Larsson D.G., Nielsen E., Svensson P.A., Carlsson B., Carlsson L.M., Billig H. 2005. Progesterone-receptor Antagonists and Statins Decrease de novo Cholesterol Synthesis and Increase Apoptosis in Rat and Human Periovulatory Granulosa Cells in vitro, Biology of Reproduction, 72: 538-545.
  • [41] Yokota T., Nomura T., Nakayama M. 1997. Identification of Brassinosteroids that Appear to be Derived from Campesterol and Cholesterol in Tomato Shoots, Plant and Cell Physiolology, 38: 1291-1294.