Mısır (Zea mays L.) Fidelerinde Kadmiyum Toksisitesi ile Nitrik Oksit Arasındaki Biyokimyasal İlişkiler

Bu çalışmada, 15 günlük mısır (Zea mays L.) fidelerine, önceden farklı sodyum nitroprussid (SNP) (25 ve 50 µM)konsantrasyonları uygulandıktan sonra, bu fidelerin farklı kadmiyum (25,50 ve 75 µM) konsantrasyonlarına karşıverdiği biyokimyasal cevaplar araştırıldı. Fidelere yapılan tüm uygulamalar hidroponik ortamda uygulandı.Kadmiyum (Cd) uygulanan mısır fidelerinin köklerinde ve yapraklarında SNP ön uygulamasız fidelerde, kontrolekıyasla okside glutatyon (GSSG) ve redükte glutatyon (GSH) miktarlarında artma ve SNP ön uygulamalı fidelerdeise azalma tespit edildi. Fidelere uygulanan kadmiyum konsantrasyonları arttıkça, hem SNP ön uygulamasız, hemde SNP ön uygulamalı fidelerde kontrol grubu fidelerine kıyasla 16:0 (palmitik asit) yapraklarda ve köklerdeartmıştır. Tek başına SNP uygulamalarında, 16:0 üzerinde kontrole kıyasla, 50 µM SNP daha az bulunmuştur. Cduygulamaları ile SNP ön uygulamasız ve SNP ön uygulamalı fidelerde 16:1 (palmioleik asit) yapraklarda genelolarak artarken, bazı konsantrasyonlarda SNP ön uygulamasıyla bu artış hafifletilmiştir. Cd uygulamaları ile SNPön uygulamasız ve SNP ön uygulamalı fidelerde 18:0 (stearik asit) köklerde ve 18:2 (linoleik asit) kök veyapraklarda artmıştır. Cd uygulamaları ile SNP ön uygulamasız fidelerde 18:3 (linolenik asit) yaprakta azalırken;SNP ön uygulamalı bazı fidelerde ise 18:3 miktarı yapraklarda artmıştır. Genel olarak 50 µM SNP önuygulamasının Cd toksisitesini baskılama da 25 µM SNP’ den daha başarılı bulundu.

Investigation of The Relationship Between Cadmium’s Toxicity and Nitric Oxide in Corn (Zea mays L.) Plants

In this study, after 15 day old corn (Zea mays L.) seedlings apply firstly to different concentrations (25 and 50 μM) of sodium nitoprusside (SNP), biochemical responses of these seedlings to different concentrations (25, 50 and 75 μM) of cadmium are examined. All applications made to seedlings were in hydroponic surroundings. In the amount of reduced glutathione (GSH) and oxide glutathione (GSSG) were increased in the roots and shoots of cadmium (Cd)-administered corn seedlings in SNP non-pretreatment seedlings once compared to the control and they was decreased in SNP pretreatment seedlings. As the cadmium concentrations applied to the seedlings increased both the SNP non-pretreatment and the SNP pretreatment seedlings, 16:0 (palmitic acid) increased in the roots and shoots once compared to the control group seedlings. Only In SNP applications was found less than 50 μM SNP at 16:0 once compared to control. With Cd applications, SNP non-pretreatment and SNP pretreatment seedlings generally increased at 16:1 (palmioleic acid) shoots, while at some concentrations this increase was alleviated by pretreatment of SNP. With Cd applications, the 18:0 (stearic acid) increased in roots and the 18:2 (linoleic acid) increased in shoots and roots; at the SNP non-pretreatment and the SNP pretreatment seedlings. With Cd applications, 18:3 (linolenic acid) decreased in shoots in the SNP non-pretreatment shoots; in some the SNP pretreatment seedlings, 18:3 increased by an amount of shoots. In general, 50 μM SNP pretreatment was found more successful than 25 μM SNP in suppressing Cd toxicity.

___

  • [1] Ruis-Jiménez J., Luque-Garcia J.L., Luque de Castro M.D. 2003. Dynamic ultrasound-assisted extraction of cadmium and lead from plants prior to electrothermal atomic absoption spectrometry. Anal. Chim. Acta, 480: 231-237.
  • [2] Ayhan B. 2006. Mısır (Zea mays L.)’ın Bazı Çeşitlerinde Ağır Metal (Cd, Pb) Stresinin Etkilerinin Belirlenmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • [3] Öktüren Asri F., Sönmez S., Çıtak S. 2007. Kadmiyumun çevre ve insan sağlığı üzerine etkileri, Dergi Park Akademik, 24 (1): 32-39.
  • [4] Durner J., Klessig D.F. 1999. Nitric Oxide as a Signal in Plants, Current Opinion in Plant Biology, 2: 369-374.
  • [5] Neill S.J., Desikan R., Clarke A., Hancock J.T. 2002a. Nitric Oxide is a Novel Component of Absisic Acid Signalling in Stomatal Guard Cell. Plant Physiology, 128: 13-16.
  • [6] Leshem Y.Y., Haramaty E. 1996. The Characterisation and Contrasting Effects of the Nitric Oxide Free Radical in Vegetative Stress and Senescence of Pisum sativum L. Foliage, Journal of Plant Physiology, 148: 258-263.
  • [7] Stöhr C., Ullrich W.R. 2002. Generation and Possible Roles of NO in Plant Roots and Their Apoplastic Space. Journal of Experimental Botany, 53 (379): 2293-2303.
  • [8] Selçukcan Ç. 2005. Ayçiçeği (Helianthus annuus L.) bitkisinde senesens ile nitrik oksit arasındaki ilişkinin incelenmesi. Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • [9] Okçu M., Tozlu E., Kumlay A.M., Pehluvan M. 2009. Ağır Metallerin Bitkiler Üzerine Etkileri, Alınteri Dergisi, 17 (B), 14- 26, ISSN: 1307-3311.
  • [10] Sonsuz B., Kargıoğlu A.F., Şıpka M., Oruç M.M., Hepşen Ö., Selvi E., Mustak H., Kargı H. Karafazlıoğlu M. 2011. Adapazarı ilçesindeki endüstriyel kaynaklı emisyonların envanterlenmesi. Bitirme Tezi, Müh. Fak. Çevre Müh., Sakarya Üniversitesi.
  • [11] Öktüren Asri F., Sönmez S., Çıtak S. 2007. Kadmiyumun çevre ve insan sağlığı üzerine etkileri. Batı Akdeniz Tarımsal Araştırma Enstitüsü, Akdeniz Üniversitesi Ziraat Fakültesi Toprak Bölümü, Antalya.
  • [12] Yost K.J., Miles L.J. 1979. Environmental Health Assessment for Cadmium: A Systems Approach, Journal of Environmental Science and Health A., 14: 285-311.
  • [13] Hegedüs A., Erdei S. Horváth G. 2001. Comparative Studies of H2O2 Detoxifying Enzymes in Green and Greening Barley Seedings under Cadmium Stress. Plant Science,160: 1085-1093.
  • [14] Laspina N.V., Groppa M.D., Tomaro M.L., Benavides M.P. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science, 168 (7): 252-260.
  • [15] Hamutoğlu R., Dinçsoy A.B., Cansaran-Duman D., Aras S. 2012. Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69 (4): 235- 253.
  • [16] Sümer A., Adiloğlu S., Çetinkaya O., Adiloğlu A., Sungur A., Akbulak C. 2013. Karamenderes Havzası Topraklarında Bazı Ağır Metallerin (Cr, Ni, Pb) Kirliliğinin Araştırılması. Tekirdağ Ziraat Fakültesi Dergisi, 10 (1): 83-89.
  • [17] Prasad M.N.V., Malec P., Waloszek A., Bojko M., Strzaka K. 2001. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci., 161: 881-889.
  • [18] Hall, J.L. 2002. Cellular meschanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53: 1-11.
  • [19] Verma S., Dubey R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164: 645- 655.
  • [20] Zacchini M., Rea E., Tullio M., Agazio M. 2003. Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. Plant Physiol. Bioch.,41: 49- 54.
  • [21] Benavides M.P., Gallego S.M., Tomaro M. L. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol., 17 (1): 21-34.
  • [22] Dong N., Lib Y., Qia J., Chena Y., Haoa Y. 2018. Nitric oxide synthase-dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Scientia Horticulturae, 230: 68-77.
  • [23] Nahar K., Hasanuzzaman M., Alam Md. M., Rahman A., Suzuki T., Fujita M. 2016. Polyamine and nitricoxide cross talk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology and Environmental Safety, 126: 245–255.
  • [24] Kopyra M., Chudzinska E., Pawlacyzle E.M., Gwozdz E.A. 2005. Nitric oxide diminishees the inhibitory effect of heavy metals an cell divisions in roots of Lupinus luteus. Biological lett. 42 (2): 18.
  • [25] Xiu-Lan C., Jun-Yu H., Yan-Fang R., Bo C., Hui C. 2012. Effect of nitroprusside on seed germination and seedling physiological characteristics of rice under cadmium stress. Journal of Hunan Agricultural University (Natural Sciences), Chian, 01.
  • [26] Zhao X., Chen L., Rehmani M.A., Wang Q., Wang S., Hou P., Li G., Ding Y. 2013. Effect of Nitric Oxide on Alleviating Cadmium Toxicity in Rice (Oryza sativa L.). Journal of Integrative Agriculture, 12 (9): 1540-1550.
  • [27] Shi H., Ye T., Chan Z. 2014. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagras (Cynodon dactylon (L.). Pers.). Plant Physiology and Biochemistry, 74: 99-107.
  • [28] Lόpez-Orenes A., Martínez-Pérez A., Calderόn A.A., Ferrer A. 2014. Pb- induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. Plant Physiology and Biochemistry, 84: 57-66.
  • [29] Shi Q., Zhu Z. 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative systemin cucumber. Environmental and Experimental Botany, 63: 317-326.
  • [30] Zawoznik M.S., Groppa M.D., Tomaro M., Benavides M.P. 2007. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science, 173: 190- 197.
  • [31] Romero-Puertas M.C., Corpas F.J., Rodríguez-Serrano Gόmez M., del Rio L.A., Sandalio L.M. 2007. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physiology, 164: 1346-1357.
  • [32] Lin R., Wang X., Luo Y., Du W., Guo H., Yin D. 2007. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere, 69: 89-98.
  • [33] Yilmaz O., Keser S., Tuzcu M., Guvenc M., Cetintas B., Irtegun S., Tastan H., Sahin K. 2009. A Practical HPLC Method to Measure Reduced (GSH) and Oxidized (GSSG) Glutathione Concentrations in Animal Tissues. Journal of Animal and Veterinary Advances, 8 (2): 343-347.
  • [34] Christie WW. 1990. Gas Chromatography and Lipids. The Oily Pres: Glasgow, 302.
  • [35] Hara A., Radin N.S. 1978. Lipid extraction of tissues with low-toxicity soluent. Anal.Biochem., 90 (1): 420-426.
  • [36] Hatata M.M., Abdel-Aal E.A. 2008.Oxidative stres and Antioxidant Defense Mechanismis in Respense to Cadmium Treatments. American-Eurasion J.Agric.&Environ. Sci, 416: 655-669.
  • [37] Guo B., Liang Y., Zhu Y. 2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice. Journal of Plant Physiology,166: 20-31.
  • [38] Yılmaz D.D., Parlak U.K. 2011. Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecological Indicators, 11: 417-423.
  • [39] Singh H.P., Batish D.R., Kaur G., Arora K., Kohli K.R. 2008. Nitric oxide (as Sodium Nitroprusside) suplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 63: 158-167.
  • [40] He J., Ren Y., Chen X., Chen H. 2014. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicology and Environmental Safety, 108: 114-119.
  • [41] Srivastava S., Mishra S., Tripathi R.D., Dwivedi S., Gupta D.K. 2006. Copper- induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) royle. Aquatic Toxicology, 80: 405-415.
  • [42] Liu Y., Wang X., Zeng G., Qu D., Gu J., Zhou M., Chai L. 2007. Cadmium- induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) gaud. Chemosphere, 69: 99-107.
  • [43] Benmously-Mlika R., Fenniche S., Marrak H., Jannet S.B., Ammar F.B., Mokhtar I. 2005. F5- Nodules pseudoxanthomateux révélant une goutte. Annales de Dermatologie et de Vénéréologie, 132 (3): 282.
  • [44] Nouairi I., Ghnaya T., Youssef N.B., Zarrouk M., Ghaorbel H.M. 2005. Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystailinum under cadmium stress. Journal of Plant Physiology, 163 (11): 1198-1202.
  • [45] Quariti O., Boussama N., Cherif A., Ghorbal M.H. 1997. Cadmium and Copper Induced Changes In Tomato Membrane Lipids. Phytochemistry, 45 (7): 1343-1350.
  • [46] Ivanova A., Krantev A., Stoynova Z. H., Popova L. 2008. Cadmium-Induced changes in maize leaves and the protective role of salicylic acid. Gen. Appl. Plant Physiology, Special Issue, 34: 149-158.
  • [47] Belkhadi A., Hediji H., Abbes Z., Nouairi I., Barhoumi Z., Zarrouk M., Chaibi W., Djebali W. 2010. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety,73: 1004–101.
  • [48] Popova L.P., Maslenkova L.T., Yordanova R.Y., Ivanova A.P., Krantev A.P., Szalai G., Janda T. 2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47: 224–231.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü