Karabük Araç Çayı kaynaklı H2S Emisyonunun Değerlendirilmesi

Koku kirliliği, yaşam kalitesi ve sağlık açısından şikâyet konusu olan önemli bir kirlilik türüdür. Koku algısı, nefes alma ile doğal olarak oluşan duyusal bir süreç olduğundan, maruz kaldığında kaçınılması zordur.$H_2S$, koku kirliliğinin ana kaynaklarından biridir ve atık su rezervuarı, nehir ağzı ve kirli nehir veya suyolları $H_2S$ oluşumu için en uygun alanlar arasındadır. Bu çalışmanın amacı Araç Çayı üzerindeki $H_2S$ konsantrasyonlarındaki değişiklikleri belirlemektir. Bu nedenle bu çalışmada Karabük ili sınırları içerisinde 15 noktada Araç Çayı yüzeyinden alınan hava örneklerinde portatif el tipi gaz monitörleri kullanılarak anlık $H_2S$ konsantrasyonları belirlenmiş ve aynı zamanda pH ve sıcaklık değerleri belirlenmiştir. Sonuçlara göre örnekleme noktaları arasında $H_2S$ ve pH değerlerinde istatistiksel olarak anlamlı farklılıklar vardı (p

The Assessment of H2S Emission from Araç Stream, in Karabük

Odor pollution is an important type of pollution that is subject to complaints in terms of quality of life and health. Since the odor perception is a sensorial process that occurs naturally with breathing, it is difficult to avoid when exposed. $H_2S$ is one of the main sources of odor pollution and wastewater reservoir, estuarine and polluted river or waterways are among the most suitable areas for $H_2S$ formation. The aim of this study is to determine the changes in $H_2S$ concentrations on Araç Stream. Therefore, in this study, $H_2S$ concentrations were determined instantaneously by using portable handheld gas monitors in air samples from the surface of Araç Stream at 15 points within the boundaries of Karabük city, and at the same time, pH and temperature values were determined. According to results, there were statistically significant differences in the $H_2S$ and pH values between the sampling points (p

___

  • [1] Hussien B. M., Rabeea M. A., Farhan M. M. 2020. Characterization and behavior of Hydrogen Sulfide plumes released from active sulfide-tar springs, Hit-Iraq. Atmospheric Pollution Research, 11 (5): 894-902.
  • [2] Ulutaş K., Pekey H., Demir S., Dinçer F. 2017. Determinatıon of odor levels in wastewater treatment plants by olfactometric method. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 19 (57): 867-877.
  • [3] Woodall G. M., Smith R. L., Granville, G. C. 2005. Proceedings of the hydrogen sulfide health research and risk assessment symposium October 31-November 2, 2000. Inhalation toxicology, 17 (11): 593-639.
  • [4] Pavilonis B. T., O'Shaughnessy P. T., Altmaier R., Metwali N., Thorne P. S. 2013. Passive monitors to measure hydrogen sulfide near concentrated animal feeding operations. Environmental Science: Processes & Impacts, 15 (6): 1271-1278.
  • [5] Moreno-Silva C., Calvo D. C., Torres N., Ayala L., Gaitán M., González L., Rincón P., Susa M. R. 2020. Hydrogen sulphide emissions and dispersion modelling from a wastewater reservoir using flux chamber measurements and AERMOD® simulations. Atmospheric Environment, 224: 117263.
  • [6] Ogbemudia F. O., Ita R. E. 2020. Assessment of Air Quality and Meteorological Variables in Lower Stubbs Creek, Qua Iboe River Estuary, Nigeria. World News of Natural Sciences, 28: 121- 130.
  • [7] Novita E., Pradana H. A., Purnomo B. H., Puspitasari A. I. 2020. River water quality assessment in East Java, Indonesia. Journal of Water and Land Development, 135-141.
  • [8] Odum E. P. 1997. Ecology: a bridge between science and society. Sinauer Associates Incorporated, Sunderland, 1-330.
  • [9] Huang J., Yın H., Chapra S.C., Zhou Q. 2017. Modelling dissolved oxygen depression in an urban river in China, Water, 9: 1-19.
  • [10] Water pollution from agriculture: A global review, Rome–Colombo, 2017. http://www.fao.org/3/i7754e/i7754e.pdf (Available: 29.02.2021).
  • [11] Toxicological review of hydrogen sulfide, 2003. EPA/635/R-03/005 Washington, DC https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0061tr.pdf (Available: 29.02.2021).
  • [12] Guidotti T.L. 2010. Hydrogen sulfide: advances in understanding human toxicity, International journal of toxicology, 29 (6): 569-581.
  • [13] Guidotti T.L. 1996. Hydrogen sulfide, Occup Med., 46 (5): 367-371.
  • [14] Polat N. 2019. Araç çayı havzası’nın uygulamalı hidrografyası. Master Thesis, Karabük University, Karabük.
  • [15] Karabük'te toplu balık ölümleri, 2018. https://tv.haberturk.com/tv/burasi- turkiye/video/karabukte-toplu-balik-olumleri-cok-sayida-balik-karaya-vurdu/496426 (Available: 29.02.2021).
  • [16] Çevre Durum Raporu, 2013. Çevre ve Şehircilik İl Müdürlüğü, Karabük.
  • [17] Özen F. 2019. Evaluation of soil fertility in citrus planted areas by geostatistics analysis method. Eurasian Journal of Soil Science, (4): 351-363.
  • [18] Ölmez S.S. 2008. Odour control in wastewater treatment plants using ozonation and chemical scrubbing. (Master Thesis, Marmara University, Istanbul).
  • [19] Isworo S, Oetari P.S, Indah N.A. 2017. Water Quality Status of River Donan due to Operational Refinery Pertamina Unit IV Cilacap-Central Java-Indonesia. Asian Journal of Biology, 1-10.
  • 20] Wiener M.S, Salas B.V, Quintero-Nunez M, Zlatev R. 2006. Effect of H2S on corrosion in polluted waters: a review. Corrosion engineering, science and technology, 41 (3): 221-227.
  • [21] Sawyer C.N, Mc Cartey T.L, Parkin G.S. 2003. Chemistry for Environmental Engineering, 5th edition.; Mc Graw-Hill Interntional Editions, New York, USA.
  • [22] Jesse L, Cristiane L, Michael A.J. 2015. AERMOD View User Guide, Lakes Environmental, Kanada.
  • [23] Antai R.E, Osuji L.C, Obafemi A.A, Onojake M. 2020. Assessment of Changes in Air Quality in Wet Season: A Case Study of Eleme, Rivers State, Nigeria, Journal of Environmental Science, Toxicology and Food Technology, 14 (5): 10-21.
  • [24] Muezzinoglu A. 2003. A study of volatile organic sulfur emissions causing urban odors. Chemosphere, 51 (4): 245-252.
  • [25] Muezzinoglu A, Odabasi M, Onat L. 2001. Volatile organic compounds in the air of İzmir, Turkey. Atmospheric Environment, 35 (4): 753-760.
  • [26] Rim-Rukeh A. 2014. An assessment of the contribution of municipal solid waste dump sites fire to atmospheric pollution. Open Journal of Air Pollution, 3 (03): 53.
  • [27] Verma A, Kumar R, Yadav S. 2020. Distribution, pollution levels, toxicity, and health risk assessment of metals in surface dust from Bhiwadi industrial area in North India. Human and Ecological Risk Assessment: An International Journal, 26 (8): 2091-2111.
  • [28] Schiffman S.S, Bennett J.L, Raymer J.H. 2001. Quantification of odors and odorants from swine operations in North Carolina. Agricultural and Forest Meteorology, 108 (3): 213-240.
  • [29] Jeon E.C, Son H.K, Sa J.H. 2009. Emission characteristics and factors of selected odorous compounds at a wastewater treatment plant. Sensors, 9 (1): 311-326.
  • [30] Dincer F. 2007. Characteristic and Chemistry of Odors from Selected Industrial Facilities in Izmir (Doctoral dissertation, Ph. D Thesis, Dokuz Eylül University, İzmir).
  • [31] Koku Oluşturan Emisyonların Kontrolü Yönetmeliği. T.C Resmi Gazete. 19 Temmuz 2013 tarih, Sayı:28712.
  • [32] Saral A, Demir S, Yıldız Ş. 2009. Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modelling approach. Journal of Hazardous Materials, 168 (1): 338-345.
  • [33] Rappert S, Müller R. 2005. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Management, 25 (9): 887-907.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü