Kablosuz Algılayıcı Ağlarında Trafik Kontrollü Gezgin Yönlendirme Yöntemi

Kablosuz algılayıcı ağlarında (KAA), verimli veri iletimi için algılayıcı düğümleri ve gezgin alıcı (toplayıcı) düğümleri arasında sağlam bir yönlendirme protokolünün tasarlanması çok önemlidir. KAA'da, gezgin alıcı düğümlerin rastgele hareketliliği, patlak trafik durumlarında ağdaki paket gecikmesini artırır. Bu nedenle, bu çalışmada, heterojen KAA'lara dayalı bir patlak trafik kontrollü yönlendirme yöntemi aktarılmıştır. Önerilen yöntemde, algılayıcı düğümleri ağ alanına dağıtıldığında, ağ alanı her birinde belirli sayıda küme bulunan iki küme grubuna bölünmektedir. Algılayıcı ağında, her küme grubuna ait birer gezgin alıcı düğüm görev yapar. Bu gezgin alıcı düğümler, önerilen patlak trafik tabanlı bir gezginlik metodu ile seçilen gezgin yollar sayesinde, küme başlarına varır varmaz tek-atlamalı tutumla tüm verileri toplar. Bu şekilde, enerji yükü ağ arasında paylaştırılarak dengeli enerji tüketimi sağlanır. Önerilen gezginlik modelinde, patlak veri sezildiği anda, gezgin alıcı düğüm yörüngesini patlak verinin olduğu küme başına doğru güncelleyerek ağdaki verileri toplar. Önerilen yöntemi doğrulamak için Ubuntu 14.04 LTS platformunda kurulu NS-2 benzetim yazılımında performans analizleri yapılmıştır. Benzetim sonuçları, önerilen yöntemin güncel çalışmalara kıyasla, ağ ömrünü artırdığını ve ortalama enerji tüketimini azalttığını göstermektedir.

Traffic Controlled Mobile Routing Method in Wireless Sensor Networks

In wireless sensor networks (WSNs), it is essential to design a robust routing protocol between sensor nodes and mobile sinks for data transmission efficiently. In WSN, random mobility of mobile sinks increases packet latency in the network in burst traffic situations. Therefore, in this study, a burst traffic controlled routing method based on heterogeneous WSNs is introduced. In the proposed method, when the sensor nodes are distributed in the network area, the network area is divided into two cluster groups, each with a certain number of clusters. In the sensor network, a mobile sink of each cluster group acts. These mobile sinks collect all data in a single-hop attitude as soon as they arrive at the cluster, thanks to the mobile paths selected with a proposed burst traffic-based mobility method. In this way, the energy load is shared among the network, making it balanced. In the proposed mobility model, once burst data is detected, the mobile sink collects data on the network by updating its trajectory towards the beginning of the cluster where the burst data is located. Performance analyzes have been performed on the NS- 2 simulation software installed on Ubuntu 14.04 LTS platform to verify the proposed method. The simulation results show that the proposed method increases the network lifetime and reduces the average energy consumption compared to recent studies.

___

  • [1] Singh J., Kaur R., Singh D. 2020. A survey and taxonomy on energy management schemes in wireless sensor networks. Journal of Systems Architecture, 111: https://doi.org/10.1016/j.sysarc.2020.101782.
  • [2] Mehrabi A., Kim K. 2015. Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Transactions on Mobile Computing, 15 (3): 690-704.
  • [3] Vancin S., Erdem E. 2017. Implementation of the vehicle recognition systems using wireless magnetic sensors. Sadhana Springer, Indian Academy of Sciences, 42 (6): 841-854.
  • [4] Khan R.A., Pathan A.S.K. 2018. The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks, 14 (4): 1-23.
  • [5] Shi J., Wei X., Zhu W. 2016. An efficient algorithm for energy management in wireless sensor networks via employing multiple mobile sinks. International Journal of Distributed Sensor Networks, 12 (1): 1-9.
  • [6] Kim B.S., Park H., Kim K.H., Godfrey D., Kim K.I. 2017. A survey on real-time communications in wireless sensor networks. Wireless Communications and Mobile Computing, 2017, 1-13.
  • [7] Thomson C., Wadhaj I., Tan Z., Al-Dubai A. 2021. Towards an energy balancing solution for wireless sensor network with mobile sink node. Computer Communications, 170: 50-64.
  • [8] Yarinezhad R., Hashemi S.N. 2019. Solving the load balanced clustering and routing problems in WSNs with an fpt-Approximation algorithm and a grid structure. Pervasive and Mobile Computing, 58: 101033.
  • [9] Thomas S., Mathew T. 2018. Intelligent Path Discovery for a Mobile Sink in Wireless Sensor Network. Procedia Computer Science, 143: 749-756.
  • [10] Mohemed R.E., Saleh A.I., Abdelrazzak M., Smara A.S. 2017. Energy-efficient routing protocols for solving energy hole problem in wireless sensor networks. Computer Networks, 114: 51-66.
  • [11] Sabor N., Sasaki S., Abo-Zahhad M., Ahmed S.M. 2017. A comprehensive survey on hierarchical- based routing protocols for mobile wireless sensor networks: review, taxonomy, and future directions. Wireless Communications and Mobile Computing, 2017: 1-23.
  • [12] Toor A.S., Jain A.K. 2019. Energy Aware Cluster Based Multi-hop Energy Efficient Routing Protocol using Multiple Mobile Nodes (MEACBM) in Wireless Sensor Networks. International Journal of Electronics and Communications (AEÜ), 102: 42-53.
  • [13] Darabkh K.A., Odetallah S.M., Alqudah Z., Khalifeh A.F., Shurman M.M. 2019. Energy-Aware and Density-Based Clustering and Relaying Protocol (EA-DB-CRP) for gathering data in wireless sensor networks. Applied Soft Computing, 80: 154-166.
  • [14] Parashar V., Mishra B., Tomar G.S. 2020. Energy Aware Communication in Wireless Sensor Network: A Survey. Materialstoday: Proceedings, 29 (2): 512-523.
  • [15] Daas M.S., Chikhi S., Bourenname El-Bay. 2021. A dynamic multi-sink routing protocol for static and mobile self-organizing wireless networks: A routing protocol for Internet of Things. Ad Hoc Networks, 117: https://doi.org/10.1016/j.adhoc.2021.102495.
  • [16] Shahraki A., Taherkordi A., Haugen Q., Eliassen F. 2020. Clustering objectives in wireless sensor networks: A survey and research direction analysis. Computer Networks, 180: https://doi.org/10.1016/j.comnet.2020.107376.
  • [17] Zhang L., Wan C. 2019. Dynamic Path Planning Design for Mobile Sink with Burst Traffic in a Region of WSN. Wireless Communications and Mobile Computing, 2019, Article ID 2435712: 1- 8.
  • [18] Naghibi M., Barati H. 2020. EGRPM: Energy efficient geographic routing protocol based on mobile sink in wireless sensor networks. Sustainable Computing: Informatics and Systems, 25 (2020): 1-10.
  • [19] Yalçın S., Erdem E. 2019. Bacteria Interactive Cost and Balanced-Compromised Approach to Clustering and Transmission Boundary-Range Cognitive Routing in Mobile Heterogeneous Wireless Sensor Networks. Sensors, 19: 867.
  • [20] Agamy A.F., Mohammed A.M. 2017. Performance Modeling of WSN with Bursty Delivery Mode. Computer Science of Cornell University, 1-12.
  • [21] Christofides N., Mingozzi A., Toth P. 1979. The Vehicle Routing Problem. Wiley, Chichester, UK, 315-338.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü