Yoğunluğa Bağlı ve Yoğunluktan Bağımsız Proximity Potansiyeller Kullanılarak Proton Halo Çekirdeklerin Elastik Saçılma Açısal Dağılımlarının Analizi

Bu çalışmada, 1p halo çekirdeklerii $^8B, ^{17}F$ ile 2p halo çekirdeği 9C’un elastik saçılma açısal dağılımlarını açıklamak için alternatif potansiyeller araştırıldı. İlk olarak, yoğunluktan bağımsız proximity potansiyellerin on üç farklı versiyonu çalışıldı. Teorik sonuçlar birbirleriyle ve deneysel verilerle karşılaştırıldı ve iyi uyumlu sonuçlar elde edildi. Daha sonra, karşılaştırmalı bir çalışma yapmak için yoğunluğa bağlı proximity potansiyel için hesaplamalar tekrar edildi. Yoğunluğa bağlı potansiyel sonuçlarının 1p ve 2p halo çekirdeklerinin elastik saçılma tesir kesitlerini açıklamada çok yeterli olmadığı görüldü.

Analysis of Elastic Scattering Angular Distributions of Proton Halo Nuclei by Using Density-Dependent and Density-Independent Proximity Potentials

In this work, alternative potentials were sought to clarify the elastic scattering angular distributions of 1p halo nuclei $^8B, ^{17}F$ and 2p halo nucleus 9C. Thirteen different versions of density-independent proximity potentials were first studied. The theoretical results were compared with each other and with experimental data, and good agreement results were obtained. Then, the calculations were repeated for density-dependent proximity potential in order to make a comparative study. It was seen that the results with density-dependent potential were not very enough in explaining the elastic scattering cross-sections of 1p and 2p halo nuclei.

___

  • [1] Yao Y.J., Zhang G.L., Qu W.W., Qian J.Q. 2015. Comparative studies for different proximity potentials applied to α decay. European Physical Journal A, 51:122.
  • [2] Ghodsi O.N., Daei-Ataollah A. 2016. Systematic study of α decay using various versions of the proximity formalism. Physical Review C, 93: 024612.
  • [3] Santhosh K.P., Sukumaran I. 2017. Heavy particle decay studies using different versions of nuclear potentials. European Physical Journal Plus, 132: 431.
  • [4] Aygun M., Aygun Z. 2019. A comprehensive analysis of $^9Li + ^{70}Zn$ fusion cross section by using proximity potentials, temperature dependent density distributions and nuclear potentials. Revista Mexicana de Física, 65: 573-582.
  • [5] Aygun M. 2020. A comprehensive theoretical analysis of $^{22}$Ne nucleus by using different density distributions, different nuclear potentials and different cluster approach. International Journal of Modern Physics E, 29: 1950112.
  • [6] Aygun M. 2018. Alternative potentials analyzing the scattering cross sections of 7,9,10,11,12,14Be isotopes from a $^{12}C$ target: Proximity Potentials. Journal of the Korean Physical Society, 73: 1255-1262.
  • [7] Aygun M. 2018. A Comparison of proximity potentials in the analysis of heavy-ion elastic cross sections. Ukrainian Journal of Physics, 63: 881.
  • [8] Aygun M. 2018. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turkish Journal of Physics, 42: 302-311. [9] Blocki J., Randrup J., Swiatecki W.J., Tsang C.F. 1977. Proximity forces. Annals of Physics, 105: 427.
  • [10] Kumar R. 2011. Effect of isospin on the fusion reaction cross section using various nuclear proximity potentials within the Wong model. Physical Review C, 84: 044613.
  • [11] Moller P., Nix J.R., Myers W.D., Swiatecki W.J. 1995. Nuclear Ground-State Masses and Deformations. Atomic Data and Nuclear Data Tables, 59: 185.
  • [12] Pomorski K., Dudek J. 2003. Nuclear liquid-drop model and surface-curvature effects. Physical Review C, 67: 044316.
  • [13] Dutt I., Puri R.K. 2010. Comparison of different proximity potentials for asymmetric colliding nuclei. Physical Review C, 81: 064609.
  • [14] Reisdorf W. 1994. Heavy-ion reactions close to the Coulomb barrier. Journal of Physics G: Nuclear and Particle Physics, 20: 1297.
  • [15] Winther A. 1995. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594: 203-245.
  • [16] Akyüz Ö., Winter A. 1981. Proceedings of the International School of Physics Enrico Fermi, Course LXXVII, Varenna, Italy Ed. by R. A. Broglia, C. H. Dasso, and R. Richi (North-Holland, Amsterdam), p. 492.
  • [17] Christensen P.R., Winther A. 1976. The evidence of the ion-ion potentials from heavy ion elastic scattering. Physics Letters B, 65: 19-22.
  • [18] Bass R. 1973. Threshold and angular momentum limit in the complete fusion of heavy ions. Physics Letters B, 47 (1973): 139.
  • [19] Bass R. 1974. Fusion of heavy nuclei in a classical model. Nuclear Physics A, 231: 45.
  • [20] Ngô H., Ngô C. 1980. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation. Nuclear Physics A, 348: 140-156.
  • [21] Denisov V.Yu. 2002. Interaction potential between heavy ions. Physics Letters B, 526: 315-321.
  • [22] Guo C.L., Zhang G.L., Le X.Y. 2013. Study of the universal function of nuclear proximity potential from density-dependent nucleon–nucleon interaction. Nuclear Physics A, 897: 54.
  • [23] Satchler G.R. 1983. Direct Nuclear Reactions. Oxford University Press, Oxford.
  • [24] Thompson I.J. 1988. Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7: 167.
  • [25] Myers W.D., Swiatecki W.J. 1966. Nuclear masses and deformations. Nuclear Physics, 81: 1-60.
  • [26] Dutt I., Puri R.K. 2010. Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions. Physical Review C, 81: 047601.
  • [27] Gharaei R., Zanganeh V., Wang N. 2018. Systematic study of proximity potentials for heavy-ion fusion cross sections. Nuclear Physics A, 979: 237-250.
  • [28] https://www-nds.iaea.org/exfor/ (Access date: 30.05.2021).
  • [29] http://nrv.jinr.ru/nrv/ (Access date: 30.05.2021)