5G Haberleşme İçin Geniş bant Mikroşerit Anten Tasarımı ve Alttaş Kalınlığının Anten Performansına Etkisinin İncelenmesi

5G teknolojisinde kullanılacak yüksek frekanslı mikroşerit antenlerin kazanç, verimlilik ve bant genişliği gibi performans kriterlerinin dielektrik alttaşın fiziksel ve elektriksel parametrelerine bağımlılığı, düşük frekanslı antenlerden çok daha hassastır. Bu nedenle, 5G haberleşmede kullanılacak milimetre dalga antenler için en uygun boyuta ve karakteristiğe sahip bir alttaş seçimi anten performansı açısından çok önemlidir. Bu çalışmada 5G haberleşme için yeni bir mikroşerit anten tasarımı, simülasyonu ve alttaş kalınlığa bağlı performans analizi yapılmıştır. Önerilen bu anten için kullanılan Arlon AD300C alttaşının fiziksel boyutlarının anten performansına etkileri 4 farklı alttaş kalınlığı kullanılarak incelenmiştir. Optimum kalınlık değerini elde etmek için sonuçlar bant genişliği, geri dönüş kaybı, kazanç, gibi kriterler açısından ayrı ayrı analiz edilmiştir. Sonuç olarak 5G haberleşme için 5.65 GHz çalışma frekansında önerilen bu mikroşerit yama antende kullanılan Arlon AD300C alttaşının en yüksek performansı kalınlık 1.2 mm iken 7.5 dBi’lık kazanç ve 140 MHz’lik bant genişliği olarak elde edilmiştir.

Wideband Microstrip Antenna Design and Investigation of the Effect of the Substrate Thickness On Antenna Performance for 5G Communication

The dependence of performance criteria such as gain, efficiency and bandwidth of high frequency microstrip antennas to be used in 5G technology on the physical and electrical parameters of the dielectric substrate is much more sensitive than low frequency antennas. Hence, deciding a substrate with the most suitable size and characteristic for mm-wave antennas for 5G communication is very important in terms of antenna performance. In this study, a new microstrip antenna for 5G communication was designed and simulated and performance analysis was performed according to substrate thickness. The effects of the physical dimensions of the proposed antenna substrate (Arlon AD300C) on antenna performance were investigated using 4 different substrate thicknesses. In order to obtain the optimum thickness value, the results were analyzed in terms of criteria such as bandwidth, return loss and gain. Consequently, the highest performance of the proposed antenna for 5G communication at 5.65 MHz operating frequency was achieved at a thickness of 1.2 mm, with a gain of 7.5 dBi and a bandwidth of 140 MHz.

___

  • [1] An W., Li Y., Fu H., Ma J., Chen W., Feng B. 2018. Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications. IEEE Antennas and Wireless Propagation Letters, 17 (4): 621-624.
  • [2] Genc A., Basyigit I.B., Goksu T., Helhel S. 2017. Investigation of the performances of X-Ku band 3D printing pyramidal horn antennas coated with the different metals. In: 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), IEEE, 1012-1016.
  • [3] Sandi E., Rusmono A.D., Vinda K. 2020. Ultra-wideband microstrip array antenna for 5G millimeter-wave applications. Journal of Communications, 15 (2): 198-204.
  • [4] Sarade S.S., Ruikar S.D., Bhaldar H.K. 2020. Design of Microstrip Patch Antenna for 5G Application. In: Techno-Societal 2018, Springer, Cham, 253-261.
  • [5] Tütüncü B. 2020. Microstrip Antenna for 5G Communication: Design and Performance Analysis. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), In: IEEE, 1-4.
  • [6] Mak K.M., Lai H.W., Luk K.M., Chan C.H. 2014. Circularly polarized patch antenna for future 5G mobile phones. IEEE Access, 2: 1521-1529.
  • [7] Gaid A.S., Alhakimi A.M., Alasadee M.S., Ali A.A. 2019. Compact and Bandwidth Efficient Multi-band Microstrip Patch Antennas for 5G Applications. In International Conference of Reliable Information and Communication Technology, Springer, Cham, 663-672.
  • [8] Chauhan B., Vijay S., Gupta S.C. 2014. Millimeter-wave mobile communications microstrip antenna for 5G-A future antenna. International Journal of Computer Applications, 99 (19): 15-18.
  • [9] Mohan G.P., Chougale M.S. 2016. CPW Feed Microstrip Patch Antenna Design for Future 5G Communication. International Journal for Technological Research in Engineering, 4 (1): 49-51.
  • [10] Agarwal A., Agarwal S. 2016. Simulation and Analysis of 5G Mobil Phones Antenna. International Journal of Electronics and Communication Engineering and Technology (IJECET), 7 (5): 7-12.
  • [11] Amrutha G.M., Sudha T. 2018. Triple Band Antenna for 5G Applications. In: IEEE, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1650-1652.
  • [12] Stutzman W.L., Thiele G.A. 2012. Antenna theory and design. John Wiley & Sons.
  • [13] Balanis C.A. 2016. Antenna theory: analysis and design. John wiley & Sons.
  • [14] Tütüncü B., Torpi H., İmeci Ş.T. 2019. Directivity improvement of microstrip antenna by inverse refraction metamaterial. Journal of Engineering Research, 7 (4): 151-164.
  • [15] Tütüncü B. 2020. FSS Wall Design for High Isolation MIMO Antenna Array. Türk Doğa ve Fen Dergisi, 9 (Özel Sayı): 148-151.
  • [16] Park J., Jeong M., Hussain N., Rhee S., Park S., Kim N. 2019. A low profile high gain filtering antenna for fifth generation systems based on nonuniform metasurface. Microwave and Optical Technology Letters, 61 (11): 2513-2519.
  • [17] Basyigit I., Dogan H., Genc A. 2019. Hizmet kalitesi değerlendirmesi: Türkiye'deki mobil ağ operatörlerinin optimizasyon performansı üzerine bir çalışması. Avrupa Bilim ve Teknoloji Dergisi, 17: 445-453.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü